第二配位球对非血红素铁(II)硫酸盐配合物O2活化的影响。

IF 3.8 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Inorganic Biochemistry Pub Date : 2025-03-01 Epub Date: 2024-11-17 DOI:10.1016/j.jinorgbio.2024.112776
Sudha Yadav, Robert S Lyons, Zoe Readi-Brown, Maxime A Siegler, David P Goldberg
{"title":"第二配位球对非血红素铁(II)硫酸盐配合物O2活化的影响。","authors":"Sudha Yadav, Robert S Lyons, Zoe Readi-Brown, Maxime A Siegler, David P Goldberg","doi":"10.1016/j.jinorgbio.2024.112776","DOIUrl":null,"url":null,"abstract":"<p><p>The synthesis and characterization of a new ligand, 1-(bis(pyridin-2-ylmethyl) amino)-2-methylpropane-2-thiolate (BPA<sup>Me2</sup>S<sup>-</sup>) and its nonheme iron complex, Fe<sup>II</sup>(BPA<sup>Me2</sup>S)Br (1), is reported. Reaction of 1 with O<sub>2</sub> at -20 °C generates a high-spin iron(III)-hydroxide complex, [Fe<sup>III</sup>(OH)(BPA<sup>Me2</sup>S)(Br)] (2), that was characterized by UV-vis, <sup>57</sup>Fe Mössbauer, and electron paramagnetic resonance (EPR) spectroscopies, and electrospray ionization mass spectrometry (ESI-MS). Density functional theory (DFT) calculations were employed to support the spectroscopic assignments. In a previous report (J. Am. Chem. Soc.2024, 146, 7915-7921), the related iron(II) complex, Fe<sup>II</sup>(BNPA<sup>Me2</sup>S)Br (BNPA<sup>Me2</sup>S<sup>-</sup> = (bis((6-(neopentylamino)pyridinyl) methyl)amino)-2-methylpropane-2-thiolate) was reported and shown to react with O<sub>2</sub> at low temperature to give a rare iron(III)-superoxide intermediate, which then converts to an S‑oxygenated sulfinate as seen for the nonheme iron thiol dioxygenases. This complex includes two hydrogen bonding neopentylamino groups in the second coordination sphere. Complex 1 does not include these H-bonding groups, and its reactivity with O<sub>2</sub> does not yield a stabilized Fe/O<sub>2</sub> intermediate or S‑oxygenated products, although the data suggest an inner-sphere mechanism and formation of an iron‑oxygen species that is capable of abstracting hydrogen atoms from solvent or weak CH bond substrates. This study indicates that the H-bond donors are critical for stabilizing the Fe<sup>III</sup>(O<sub>2</sub><sup>-•</sup>) intermediate with the BNPA<sup>Me2</sup>S<sup>-</sup> ligand, which in turn leads to S‑oxygenation, as opposed to H-atom abstraction, following O<sub>2</sub> activation by the nonheme iron center<sub>.</sub></p>","PeriodicalId":364,"journal":{"name":"Journal of Inorganic Biochemistry","volume":"264 ","pages":"112776"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of the second coordination sphere on O<sub>2</sub> activation by a nonheme iron(II) thiolate complex.\",\"authors\":\"Sudha Yadav, Robert S Lyons, Zoe Readi-Brown, Maxime A Siegler, David P Goldberg\",\"doi\":\"10.1016/j.jinorgbio.2024.112776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The synthesis and characterization of a new ligand, 1-(bis(pyridin-2-ylmethyl) amino)-2-methylpropane-2-thiolate (BPA<sup>Me2</sup>S<sup>-</sup>) and its nonheme iron complex, Fe<sup>II</sup>(BPA<sup>Me2</sup>S)Br (1), is reported. Reaction of 1 with O<sub>2</sub> at -20 °C generates a high-spin iron(III)-hydroxide complex, [Fe<sup>III</sup>(OH)(BPA<sup>Me2</sup>S)(Br)] (2), that was characterized by UV-vis, <sup>57</sup>Fe Mössbauer, and electron paramagnetic resonance (EPR) spectroscopies, and electrospray ionization mass spectrometry (ESI-MS). Density functional theory (DFT) calculations were employed to support the spectroscopic assignments. In a previous report (J. Am. Chem. Soc.2024, 146, 7915-7921), the related iron(II) complex, Fe<sup>II</sup>(BNPA<sup>Me2</sup>S)Br (BNPA<sup>Me2</sup>S<sup>-</sup> = (bis((6-(neopentylamino)pyridinyl) methyl)amino)-2-methylpropane-2-thiolate) was reported and shown to react with O<sub>2</sub> at low temperature to give a rare iron(III)-superoxide intermediate, which then converts to an S‑oxygenated sulfinate as seen for the nonheme iron thiol dioxygenases. This complex includes two hydrogen bonding neopentylamino groups in the second coordination sphere. Complex 1 does not include these H-bonding groups, and its reactivity with O<sub>2</sub> does not yield a stabilized Fe/O<sub>2</sub> intermediate or S‑oxygenated products, although the data suggest an inner-sphere mechanism and formation of an iron‑oxygen species that is capable of abstracting hydrogen atoms from solvent or weak CH bond substrates. This study indicates that the H-bond donors are critical for stabilizing the Fe<sup>III</sup>(O<sub>2</sub><sup>-•</sup>) intermediate with the BNPA<sup>Me2</sup>S<sup>-</sup> ligand, which in turn leads to S‑oxygenation, as opposed to H-atom abstraction, following O<sub>2</sub> activation by the nonheme iron center<sub>.</sub></p>\",\"PeriodicalId\":364,\"journal\":{\"name\":\"Journal of Inorganic Biochemistry\",\"volume\":\"264 \",\"pages\":\"112776\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inorganic Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jinorgbio.2024.112776\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jinorgbio.2024.112776","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

报道了新配体1-(双(吡啶-2-甲基)氨基)-2-甲基丙烷-2-硫代酸酯(BPAMe2S-)及其非血红素铁配合物FeII(BPAMe2S)Br(1)的合成和表征。1与O2在-20℃下反应生成高自旋铁(III)-氢氧化物配合物[FeIII(OH)(BPAMe2S)(Br)](2),通过UV-vis、57Fe Mössbauer、电子顺磁共振(EPR)谱和电喷雾质谱(ESI-MS)对其进行了表征。采用密度泛函理论(DFT)计算支持光谱分配。在之前的一份报告中(j.a m。化学。与之相关的铁(II)配合物FeII(BNPAMe2S)Br (BNPAMe2S- = (bis((6-(neopentylamino)pyridinyl) methyl)amino)-2-methylpropane-2-thiolate)在低温下与O2反应生成稀有的铁(III)-超氧化物中间体,然后转化为S-氧合亚硫酸盐,如非血红素铁硫醇双加氧酶所见。该配合物在第二配位球中包含两个氢键新戊基氨基。配合物1不包括这些氢键基团,它与O2的反应性不会产生稳定的Fe/O2中间产物或S氧产物,尽管数据表明球内机制和铁氧物质的形成能够从溶剂或弱CH键底物中提取氢原子。该研究表明,氢键供体对于用BNPAMe2S-配体稳定FeIII(O2-•)中间体至关重要,这反过来导致非血红素铁中心O2活化后的S-氧合,而不是h原子的提取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of the second coordination sphere on O2 activation by a nonheme iron(II) thiolate complex.

The synthesis and characterization of a new ligand, 1-(bis(pyridin-2-ylmethyl) amino)-2-methylpropane-2-thiolate (BPAMe2S-) and its nonheme iron complex, FeII(BPAMe2S)Br (1), is reported. Reaction of 1 with O2 at -20 °C generates a high-spin iron(III)-hydroxide complex, [FeIII(OH)(BPAMe2S)(Br)] (2), that was characterized by UV-vis, 57Fe Mössbauer, and electron paramagnetic resonance (EPR) spectroscopies, and electrospray ionization mass spectrometry (ESI-MS). Density functional theory (DFT) calculations were employed to support the spectroscopic assignments. In a previous report (J. Am. Chem. Soc.2024, 146, 7915-7921), the related iron(II) complex, FeII(BNPAMe2S)Br (BNPAMe2S- = (bis((6-(neopentylamino)pyridinyl) methyl)amino)-2-methylpropane-2-thiolate) was reported and shown to react with O2 at low temperature to give a rare iron(III)-superoxide intermediate, which then converts to an S‑oxygenated sulfinate as seen for the nonheme iron thiol dioxygenases. This complex includes two hydrogen bonding neopentylamino groups in the second coordination sphere. Complex 1 does not include these H-bonding groups, and its reactivity with O2 does not yield a stabilized Fe/O2 intermediate or S‑oxygenated products, although the data suggest an inner-sphere mechanism and formation of an iron‑oxygen species that is capable of abstracting hydrogen atoms from solvent or weak CH bond substrates. This study indicates that the H-bond donors are critical for stabilizing the FeIII(O2-•) intermediate with the BNPAMe2S- ligand, which in turn leads to S‑oxygenation, as opposed to H-atom abstraction, following O2 activation by the nonheme iron center.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Inorganic Biochemistry
Journal of Inorganic Biochemistry 生物-生化与分子生物学
CiteScore
7.00
自引率
10.30%
发文量
336
审稿时长
41 days
期刊介绍: The Journal of Inorganic Biochemistry is an established international forum for research in all aspects of Biological Inorganic Chemistry. Original papers of a high scientific level are published in the form of Articles (full length papers), Short Communications, Focused Reviews and Bioinorganic Methods. Topics include: the chemistry, structure and function of metalloenzymes; the interaction of inorganic ions and molecules with proteins and nucleic acids; the synthesis and properties of coordination complexes of biological interest including both structural and functional model systems; the function of metal- containing systems in the regulation of gene expression; the role of metals in medicine; the application of spectroscopic methods to determine the structure of metallobiomolecules; the preparation and characterization of metal-based biomaterials; and related systems. The emphasis of the Journal is on the structure and mechanism of action of metallobiomolecules.
期刊最新文献
Schiff Base-platinum and ruthenium complexes and anti-Alzheimer properties. Co(II), Cu(II), and Zn(II) thio-bis(benzimidazole) complexes induce apoptosis via mitochondrial pathway. Influence of the second coordination sphere on O2 activation by a nonheme iron(II) thiolate complex. Insight into uranyl binding by cyclic peptides from molecular dynamics and density functional theory. Interaction of VVO2-hydrazonates with lysozyme.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1