Maddalena Paolillo, Giarita Ferraro, Gurunath Sahu, Pratikshya Das Pattanayak, Eugenio Garribba, Sourangshu Halder, Riya Ghosh, Bipul Mondal, Pabitra B Chatterjee, Rupam Dinda, Antonello Merlino
{"title":"vvo2 -腙与溶菌酶的相互作用。","authors":"Maddalena Paolillo, Giarita Ferraro, Gurunath Sahu, Pratikshya Das Pattanayak, Eugenio Garribba, Sourangshu Halder, Riya Ghosh, Bipul Mondal, Pabitra B Chatterjee, Rupam Dinda, Antonello Merlino","doi":"10.1016/j.jinorgbio.2024.112787","DOIUrl":null,"url":null,"abstract":"<p><p>Vanadium compounds (VCs) exhibit a broad range of pharmacological properties, with their most significant medical applications being in the treatment of cancer and diabetes. The therapeutic effects and mode of action of VCs may be associated with their ability to bind proteins and, consequently, understanding the VC-protein interaction is of paramount importance. Among the promising VCs, the V<sup>V</sup>O<sub>2</sub> complex with the aroylhydrazone furan-2-carboxylic acid ((3-ethoxy-2-hydroxybenzylidene)hydrazide, hereafter denoted as VC1), deserves attention, since it exhibits cytotoxicity against various cancer cell lines, including HeLa. The interaction between VC1 and its analogue, denoted as VC2 (the dioxidovanadium(V) complex with (E)-N'-(1-(2-hydroxy-5-methoxyphenyl)ethylidene)furan-2-carbohydrazide), and hen egg white lysozyme (HEWL) was examined by UV-vis spectroscopy, fluorescence, circular dichroism, and X-ray crystallography. The interaction of VC1 and VC2 with HEWL does not alter the protein secondary and tertiary structure. Crystallographic studies indicate that the two metal complexes or V-containing fragments originating from VC1 and VC2 bind the protein via non-covalent interactions. Furthermore, when bound to HEWL, two VC1 molecules and two VC2 molecules form a supramolecular association stabilized by stacking interactions. This type of interaction could favour the binding of similar compounds to proteins and affect their biological activity.</p>","PeriodicalId":364,"journal":{"name":"Journal of Inorganic Biochemistry","volume":"264 ","pages":"112787"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interaction of V<sup>V</sup>O<sub>2</sub>-hydrazonates with lysozyme.\",\"authors\":\"Maddalena Paolillo, Giarita Ferraro, Gurunath Sahu, Pratikshya Das Pattanayak, Eugenio Garribba, Sourangshu Halder, Riya Ghosh, Bipul Mondal, Pabitra B Chatterjee, Rupam Dinda, Antonello Merlino\",\"doi\":\"10.1016/j.jinorgbio.2024.112787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vanadium compounds (VCs) exhibit a broad range of pharmacological properties, with their most significant medical applications being in the treatment of cancer and diabetes. The therapeutic effects and mode of action of VCs may be associated with their ability to bind proteins and, consequently, understanding the VC-protein interaction is of paramount importance. Among the promising VCs, the V<sup>V</sup>O<sub>2</sub> complex with the aroylhydrazone furan-2-carboxylic acid ((3-ethoxy-2-hydroxybenzylidene)hydrazide, hereafter denoted as VC1), deserves attention, since it exhibits cytotoxicity against various cancer cell lines, including HeLa. The interaction between VC1 and its analogue, denoted as VC2 (the dioxidovanadium(V) complex with (E)-N'-(1-(2-hydroxy-5-methoxyphenyl)ethylidene)furan-2-carbohydrazide), and hen egg white lysozyme (HEWL) was examined by UV-vis spectroscopy, fluorescence, circular dichroism, and X-ray crystallography. The interaction of VC1 and VC2 with HEWL does not alter the protein secondary and tertiary structure. Crystallographic studies indicate that the two metal complexes or V-containing fragments originating from VC1 and VC2 bind the protein via non-covalent interactions. Furthermore, when bound to HEWL, two VC1 molecules and two VC2 molecules form a supramolecular association stabilized by stacking interactions. This type of interaction could favour the binding of similar compounds to proteins and affect their biological activity.</p>\",\"PeriodicalId\":364,\"journal\":{\"name\":\"Journal of Inorganic Biochemistry\",\"volume\":\"264 \",\"pages\":\"112787\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inorganic Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jinorgbio.2024.112787\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jinorgbio.2024.112787","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
钒化合物(vc)具有广泛的药理特性,其最重要的医学应用是治疗癌症和糖尿病。vc的治疗效果和作用方式可能与其结合蛋白质的能力有关,因此,了解vc与蛋白质的相互作用至关重要。在有前景的vc中,与芳基腙呋喃-2-羧酸((3-乙氧基-2-羟基苄基)肼的VVO2配合物(以下简称VC1)值得关注,因为它对包括HeLa在内的多种癌细胞具有细胞毒性。用紫外-可见光谱、荧光、圆二色性和x射线晶体学研究了VC1及其类似物VC2(二氧化钒(V)配合物与(E)- n '-(1-(2-羟基-5-甲氧基苯基)乙基)呋喃-2-碳肼)与蛋清溶菌酶(HEWL)的相互作用。VC1和VC2与HEWL的相互作用不会改变蛋白质的二级和三级结构。晶体学研究表明,来自VC1和VC2的两种金属配合物或含v片段通过非共价相互作用与蛋白质结合。此外,当两个VC1分子和两个VC2分子结合到HEWL上时,通过堆叠相互作用形成了稳定的超分子结合。这种类型的相互作用可能有利于类似化合物与蛋白质的结合,并影响其生物活性。
Vanadium compounds (VCs) exhibit a broad range of pharmacological properties, with their most significant medical applications being in the treatment of cancer and diabetes. The therapeutic effects and mode of action of VCs may be associated with their ability to bind proteins and, consequently, understanding the VC-protein interaction is of paramount importance. Among the promising VCs, the VVO2 complex with the aroylhydrazone furan-2-carboxylic acid ((3-ethoxy-2-hydroxybenzylidene)hydrazide, hereafter denoted as VC1), deserves attention, since it exhibits cytotoxicity against various cancer cell lines, including HeLa. The interaction between VC1 and its analogue, denoted as VC2 (the dioxidovanadium(V) complex with (E)-N'-(1-(2-hydroxy-5-methoxyphenyl)ethylidene)furan-2-carbohydrazide), and hen egg white lysozyme (HEWL) was examined by UV-vis spectroscopy, fluorescence, circular dichroism, and X-ray crystallography. The interaction of VC1 and VC2 with HEWL does not alter the protein secondary and tertiary structure. Crystallographic studies indicate that the two metal complexes or V-containing fragments originating from VC1 and VC2 bind the protein via non-covalent interactions. Furthermore, when bound to HEWL, two VC1 molecules and two VC2 molecules form a supramolecular association stabilized by stacking interactions. This type of interaction could favour the binding of similar compounds to proteins and affect their biological activity.
期刊介绍:
The Journal of Inorganic Biochemistry is an established international forum for research in all aspects of Biological Inorganic Chemistry. Original papers of a high scientific level are published in the form of Articles (full length papers), Short Communications, Focused Reviews and Bioinorganic Methods. Topics include: the chemistry, structure and function of metalloenzymes; the interaction of inorganic ions and molecules with proteins and nucleic acids; the synthesis and properties of coordination complexes of biological interest including both structural and functional model systems; the function of metal- containing systems in the regulation of gene expression; the role of metals in medicine; the application of spectroscopic methods to determine the structure of metallobiomolecules; the preparation and characterization of metal-based biomaterials; and related systems. The emphasis of the Journal is on the structure and mechanism of action of metallobiomolecules.