cnvizard——一个轻量级的流应用程序,用于对拷贝数变量进行交互式分析。

IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS BMC Bioinformatics Pub Date : 2024-12-17 DOI:10.1186/s12859-024-06010-2
Jeremias Krause, Carlos Classen, Daniela Dey, Eva Lausberg, Luise Kessler, Thomas Eggermann, Ingo Kurth, Matthias Begemann, Florian Kraft
{"title":"cnvizard——一个轻量级的流应用程序,用于对拷贝数变量进行交互式分析。","authors":"Jeremias Krause, Carlos Classen, Daniela Dey, Eva Lausberg, Luise Kessler, Thomas Eggermann, Ingo Kurth, Matthias Begemann, Florian Kraft","doi":"10.1186/s12859-024-06010-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Methods to call, analyze and visualize copy number variations (CNVs) from massive parallel sequencing data have been widely adopted in clinical practice and genetic research. To enable a streamlined analysis of CNV data, comprehensive annotations and good visualizations are indispensable. The ability to detect single exon CNVs is another important feature for genetic testing. Nonetheless, most available open-source tools come with limitations in at least one of these areas. One additional drawback is that available tools deliver data in an unstructured and static format which requires subsequent visualization and formatting efforts.</p><p><strong>Results: </strong>Here we present CNVizard, an interactive Streamlit app allowing a comprehensive visualization of CNVkit data. Furthermore, combining CNVizard with the CNVand pipeline allows the annotation and visualization of CNV or SV VCF files from any CNV caller.</p><p><strong>Conclusion: </strong>CNVizard, in combination with CNVand, enables the comprehensive and streamlined analysis of short- and long-read sequencing data and provide an intuitive webapp-like experience enabling an interactive visualization of CNV data.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"25 1","pages":"376"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11650836/pdf/","citationCount":"0","resultStr":"{\"title\":\"CNVizard-a lightweight streamlit application for an interactive analysis of copy number variants.\",\"authors\":\"Jeremias Krause, Carlos Classen, Daniela Dey, Eva Lausberg, Luise Kessler, Thomas Eggermann, Ingo Kurth, Matthias Begemann, Florian Kraft\",\"doi\":\"10.1186/s12859-024-06010-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Methods to call, analyze and visualize copy number variations (CNVs) from massive parallel sequencing data have been widely adopted in clinical practice and genetic research. To enable a streamlined analysis of CNV data, comprehensive annotations and good visualizations are indispensable. The ability to detect single exon CNVs is another important feature for genetic testing. Nonetheless, most available open-source tools come with limitations in at least one of these areas. One additional drawback is that available tools deliver data in an unstructured and static format which requires subsequent visualization and formatting efforts.</p><p><strong>Results: </strong>Here we present CNVizard, an interactive Streamlit app allowing a comprehensive visualization of CNVkit data. Furthermore, combining CNVizard with the CNVand pipeline allows the annotation and visualization of CNV or SV VCF files from any CNV caller.</p><p><strong>Conclusion: </strong>CNVizard, in combination with CNVand, enables the comprehensive and streamlined analysis of short- and long-read sequencing data and provide an intuitive webapp-like experience enabling an interactive visualization of CNV data.</p>\",\"PeriodicalId\":8958,\"journal\":{\"name\":\"BMC Bioinformatics\",\"volume\":\"25 1\",\"pages\":\"376\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11650836/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12859-024-06010-2\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-06010-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

背景:从大量平行测序数据中调用、分析和可视化拷贝数变异(CNVs)的方法已广泛应用于临床实践和遗传学研究。为了简化CNV数据的分析,全面的注释和良好的可视化是必不可少的。检测单外显子CNVs的能力是基因检测的另一个重要特征。尽管如此,大多数可用的开源工具至少在其中一个方面存在局限性。另一个缺点是可用的工具以非结构化和静态格式交付数据,这需要后续的可视化和格式化工作。结果:在这里,我们展示了CNVizard,一个交互式的流式应用程序,允许CNVkit数据的全面可视化。此外,将CNVizard与CNVand管道相结合,可以对任何CNV调用者的CNV或SV VCF文件进行注释和可视化。结论:CNVizard与CNVand相结合,可以对短读和长读测序数据进行全面、精简的分析,并提供类似web应用程序的直观体验,实现CNV数据的交互式可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CNVizard-a lightweight streamlit application for an interactive analysis of copy number variants.

Background: Methods to call, analyze and visualize copy number variations (CNVs) from massive parallel sequencing data have been widely adopted in clinical practice and genetic research. To enable a streamlined analysis of CNV data, comprehensive annotations and good visualizations are indispensable. The ability to detect single exon CNVs is another important feature for genetic testing. Nonetheless, most available open-source tools come with limitations in at least one of these areas. One additional drawback is that available tools deliver data in an unstructured and static format which requires subsequent visualization and formatting efforts.

Results: Here we present CNVizard, an interactive Streamlit app allowing a comprehensive visualization of CNVkit data. Furthermore, combining CNVizard with the CNVand pipeline allows the annotation and visualization of CNV or SV VCF files from any CNV caller.

Conclusion: CNVizard, in combination with CNVand, enables the comprehensive and streamlined analysis of short- and long-read sequencing data and provide an intuitive webapp-like experience enabling an interactive visualization of CNV data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Bioinformatics
BMC Bioinformatics 生物-生化研究方法
CiteScore
5.70
自引率
3.30%
发文量
506
审稿时长
4.3 months
期刊介绍: BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology. BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
期刊最新文献
Hybrid generative adversarial network based on frequency and spatial domain for histopathological image synthesis. HDN-DDI: a novel framework for predicting drug-drug interactions using hierarchical molecular graphs and enhanced dual-view representation learning. BAC-browser: the tool for synthetic biology. A comprehensive survey of scoring functions for protein docking models. Joint embedding-classifier learning for interpretable collaborative filtering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1