利用CRISPR/ cas9技术提高微生物的淀粉酶降解能力,实现废水的可持续处理

IF 2.3 3区 生物学 Q3 MICROBIOLOGY Current Microbiology Pub Date : 2024-12-17 DOI:10.1007/s00284-024-04024-w
Yatika Dixit, Preeti Yadav, Hitakshi Asnani, Arun Kumar Sharma
{"title":"利用CRISPR/ cas9技术提高微生物的淀粉酶降解能力,实现废水的可持续处理","authors":"Yatika Dixit, Preeti Yadav, Hitakshi Asnani, Arun Kumar Sharma","doi":"10.1007/s00284-024-04024-w","DOIUrl":null,"url":null,"abstract":"<p><p>Amylases are pivotal enzymes with extensive industrial applications, including food processing, textile manufacturing, pharmaceuticals, and biofuel production. Traditional methods for enhancing amylase production in microbial strains often lack precision and efficiency. The advent of CRISPR/Cas9 technology has revolutionized genetic engineering, offering precise and targeted modifications to microbial genomes. This review explores the potential of CRISPR/Cas9 for improving amylase production, highlighting its advantages over conventional methods. This review discusses the mechanism of CRISPR/Cas9, the identification and targeting of key genes involved in amylase synthesis and regulation, and the optimization of expression systems. Additionally, current review examines case studies demonstrating successful CRISPR/Cas9 applications in various microbial hosts. The review also delves into the integration of CRISPR/Cas9 in wastewater treatment, where genetically engineered amylolytic strains enhance the degradation of complex organic pollutants. Despite the promising prospects, challenges such as off-target effects and regulatory considerations remain. This review provides a comprehensive overview of the current advancements, challenges, and future directions in the application of CRISPR/Cas9 technology for amylase production and environmental biotechnology.</p>","PeriodicalId":11360,"journal":{"name":"Current Microbiology","volume":"82 1","pages":"44"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CRISPR/Cas9-Engineering for Increased Amylolytic Potential of Microbes for Sustainable Wastewater Treatment: A Review.\",\"authors\":\"Yatika Dixit, Preeti Yadav, Hitakshi Asnani, Arun Kumar Sharma\",\"doi\":\"10.1007/s00284-024-04024-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Amylases are pivotal enzymes with extensive industrial applications, including food processing, textile manufacturing, pharmaceuticals, and biofuel production. Traditional methods for enhancing amylase production in microbial strains often lack precision and efficiency. The advent of CRISPR/Cas9 technology has revolutionized genetic engineering, offering precise and targeted modifications to microbial genomes. This review explores the potential of CRISPR/Cas9 for improving amylase production, highlighting its advantages over conventional methods. This review discusses the mechanism of CRISPR/Cas9, the identification and targeting of key genes involved in amylase synthesis and regulation, and the optimization of expression systems. Additionally, current review examines case studies demonstrating successful CRISPR/Cas9 applications in various microbial hosts. The review also delves into the integration of CRISPR/Cas9 in wastewater treatment, where genetically engineered amylolytic strains enhance the degradation of complex organic pollutants. Despite the promising prospects, challenges such as off-target effects and regulatory considerations remain. This review provides a comprehensive overview of the current advancements, challenges, and future directions in the application of CRISPR/Cas9 technology for amylase production and environmental biotechnology.</p>\",\"PeriodicalId\":11360,\"journal\":{\"name\":\"Current Microbiology\",\"volume\":\"82 1\",\"pages\":\"44\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00284-024-04024-w\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00284-024-04024-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

淀粉酶是具有广泛工业应用的关键酶,包括食品加工、纺织制造、制药和生物燃料生产。提高微生物菌种淀粉酶产量的传统方法往往缺乏精度和效率。CRISPR/Cas9技术的出现彻底改变了基因工程,为微生物基因组提供了精确和有针对性的修改。这篇综述探讨了CRISPR/Cas9在提高淀粉酶生产方面的潜力,突出了其相对于传统方法的优势。本文综述了CRISPR/Cas9的作用机制、淀粉酶合成与调控关键基因的鉴定与靶向、表达系统的优化等方面的研究进展。此外,目前的综述考察了在各种微生物宿主中成功应用CRISPR/Cas9的案例研究。这篇综述还深入探讨了CRISPR/Cas9在废水处理中的整合,其中基因工程淀粉降解菌株增强了对复杂有机污染物的降解。尽管前景看好,但脱靶效应和监管考虑等挑战依然存在。本文综述了目前CRISPR/Cas9技术在淀粉酶生产和环境生物技术中的应用进展、挑战和未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CRISPR/Cas9-Engineering for Increased Amylolytic Potential of Microbes for Sustainable Wastewater Treatment: A Review.

Amylases are pivotal enzymes with extensive industrial applications, including food processing, textile manufacturing, pharmaceuticals, and biofuel production. Traditional methods for enhancing amylase production in microbial strains often lack precision and efficiency. The advent of CRISPR/Cas9 technology has revolutionized genetic engineering, offering precise and targeted modifications to microbial genomes. This review explores the potential of CRISPR/Cas9 for improving amylase production, highlighting its advantages over conventional methods. This review discusses the mechanism of CRISPR/Cas9, the identification and targeting of key genes involved in amylase synthesis and regulation, and the optimization of expression systems. Additionally, current review examines case studies demonstrating successful CRISPR/Cas9 applications in various microbial hosts. The review also delves into the integration of CRISPR/Cas9 in wastewater treatment, where genetically engineered amylolytic strains enhance the degradation of complex organic pollutants. Despite the promising prospects, challenges such as off-target effects and regulatory considerations remain. This review provides a comprehensive overview of the current advancements, challenges, and future directions in the application of CRISPR/Cas9 technology for amylase production and environmental biotechnology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Microbiology
Current Microbiology 生物-微生物学
CiteScore
4.80
自引率
3.80%
发文量
380
审稿时长
2.5 months
期刊介绍: Current Microbiology is a well-established journal that publishes articles in all aspects of microbial cells and the interactions between the microorganisms, their hosts and the environment. Current Microbiology publishes original research articles, short communications, reviews and letters to the editor, spanning the following areas: physiology, biochemistry, genetics, genomics, biotechnology, ecology, evolution, morphology, taxonomy, diagnostic methods, medical and clinical microbiology and immunology as applied to microorganisms.
期刊最新文献
Comamonas squillarum sp. nov., Isolated from Intestine of Red Swamp Crayfish (Procambarus clarkii). Plant Growth-Promoting Potential of Colletotrichum sp. Isolated from Ocimum basilicum L. Leaves: A Broad-Spectrum Evaluation. Prospecting the Functional Potential of Bacillus altitudinis 1.4 Isolated from Sediment in Association with Bradyrhizobium japonicum. Protection of Mice Vaccinated with a New B Cell and T Cell Epitopes Cocktail from Staphylococcus aureus Challenge in Skin Infection Model. Antifungal Activity of Boron/Selenium Nanoparticles Irradiated via Gamma Rays Against Alternaria alternata and Fusarium equiseti.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1