OsNCED5通过调节水稻的活性氧稳态而赋予水稻冷胁迫耐受性。

IF 6.1 2区 生物学 Q1 PLANT SCIENCES Plant Physiology and Biochemistry Pub Date : 2024-12-25 DOI:10.1016/j.plaphy.2024.109455
Zhipan Xiang, Lin Zhang, Mingze Zhang, Yuxian Yao, Qianqian Qian, Ziyi Wei, Baolu Cui, Dengyan Wang, Changbin Quan, Minfeng Lu, Liangbi Chen
{"title":"OsNCED5通过调节水稻的活性氧稳态而赋予水稻冷胁迫耐受性。","authors":"Zhipan Xiang, Lin Zhang, Mingze Zhang, Yuxian Yao, Qianqian Qian, Ziyi Wei, Baolu Cui, Dengyan Wang, Changbin Quan, Minfeng Lu, Liangbi Chen","doi":"10.1016/j.plaphy.2024.109455","DOIUrl":null,"url":null,"abstract":"<p><p>Cold stress is one of the most serious abiotic stresses that affects the growth and yield in rice. However, the molecular mechanism by which abscisic acid (ABA) regulates plant cold stress tolerance is not yet clear. In this study, we identified a member of the OsNCED (9-cis-epoxycarotenoid dioxygenase) gene family, OsNCED5, which confers cold stress tolerance in rice. OsNCED5 encodes a chloroplast-localized ABA biosynthetic enzyme and its expression is strongly induced by cold stress. Disruption of OsNCED5 by CRISPR/Cas9-mediated mutagenesis led to a significant decrease in ABA content and exhibited significant reduced cold stress tolerance at the seedling stage. Exogenous ABA restored the cold stress tolerance of the osnced5 mutants. Overexpression of OsNCED5 gene significantly improved the cold stress tolerance of rice seedlings. Moreover, OsNCED5 mainly regulates cold stress tolerance through regulating reactive oxygen species (ROS) homeostasis. Taken together, we identified a new OsNCED regulator involved in cold stress tolerance, and provided a potential target gene for enhancing cold stress tolerance in rice.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109455"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OsNCED5 confers cold stress tolerance through regulating ROS homeostasis in rice.\",\"authors\":\"Zhipan Xiang, Lin Zhang, Mingze Zhang, Yuxian Yao, Qianqian Qian, Ziyi Wei, Baolu Cui, Dengyan Wang, Changbin Quan, Minfeng Lu, Liangbi Chen\",\"doi\":\"10.1016/j.plaphy.2024.109455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cold stress is one of the most serious abiotic stresses that affects the growth and yield in rice. However, the molecular mechanism by which abscisic acid (ABA) regulates plant cold stress tolerance is not yet clear. In this study, we identified a member of the OsNCED (9-cis-epoxycarotenoid dioxygenase) gene family, OsNCED5, which confers cold stress tolerance in rice. OsNCED5 encodes a chloroplast-localized ABA biosynthetic enzyme and its expression is strongly induced by cold stress. Disruption of OsNCED5 by CRISPR/Cas9-mediated mutagenesis led to a significant decrease in ABA content and exhibited significant reduced cold stress tolerance at the seedling stage. Exogenous ABA restored the cold stress tolerance of the osnced5 mutants. Overexpression of OsNCED5 gene significantly improved the cold stress tolerance of rice seedlings. Moreover, OsNCED5 mainly regulates cold stress tolerance through regulating reactive oxygen species (ROS) homeostasis. Taken together, we identified a new OsNCED regulator involved in cold stress tolerance, and provided a potential target gene for enhancing cold stress tolerance in rice.</p>\",\"PeriodicalId\":20234,\"journal\":{\"name\":\"Plant Physiology and Biochemistry\",\"volume\":\"220 \",\"pages\":\"109455\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology and Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.plaphy.2024.109455\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2024.109455","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

冷胁迫是影响水稻生长和产量的最严重的非生物胁迫之一。然而,ABA调控植物抗寒性的分子机制尚不清楚。在这项研究中,我们确定了OsNCED(9-顺式环氧类胡萝卜素双加氧酶)基因家族的成员OsNCED5,该基因赋予水稻抗冷胁迫能力。OsNCED5编码叶绿体定位的ABA生物合成酶,其表达受到冷胁迫的强烈诱导。通过CRISPR/ cas9介导的诱变破坏OsNCED5导致ABA含量显著降低,在苗期表现出显著降低的冷胁迫耐受性。外源ABA恢复了osnced5突变体的冷胁迫耐受性。过表达OsNCED5基因可显著提高水稻幼苗的冷胁迫耐受性。此外,OsNCED5主要通过调节活性氧(reactive oxygen species, ROS)稳态来调节冷胁迫耐受性。综上所述,我们确定了一个新的OsNCED调控因子参与冷胁迫耐受性,并为提高水稻的冷胁迫耐受性提供了一个潜在的靶基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OsNCED5 confers cold stress tolerance through regulating ROS homeostasis in rice.

Cold stress is one of the most serious abiotic stresses that affects the growth and yield in rice. However, the molecular mechanism by which abscisic acid (ABA) regulates plant cold stress tolerance is not yet clear. In this study, we identified a member of the OsNCED (9-cis-epoxycarotenoid dioxygenase) gene family, OsNCED5, which confers cold stress tolerance in rice. OsNCED5 encodes a chloroplast-localized ABA biosynthetic enzyme and its expression is strongly induced by cold stress. Disruption of OsNCED5 by CRISPR/Cas9-mediated mutagenesis led to a significant decrease in ABA content and exhibited significant reduced cold stress tolerance at the seedling stage. Exogenous ABA restored the cold stress tolerance of the osnced5 mutants. Overexpression of OsNCED5 gene significantly improved the cold stress tolerance of rice seedlings. Moreover, OsNCED5 mainly regulates cold stress tolerance through regulating reactive oxygen species (ROS) homeostasis. Taken together, we identified a new OsNCED regulator involved in cold stress tolerance, and provided a potential target gene for enhancing cold stress tolerance in rice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Physiology and Biochemistry
Plant Physiology and Biochemistry 生物-植物科学
CiteScore
11.10
自引率
3.10%
发文量
410
审稿时长
33 days
期刊介绍: Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement. Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB. Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.
期刊最新文献
Bacillus pumilus G5 combined with silicon enhanced flavonoid biosynthesis in drought-stressed Glycyrrhiza uralensis Fisch. by regulating jasmonate, gibberellin and ethylene crosstalk. Genome-wide identification of the bZIP family in Eutrema salsugineum and functional analysis of EsbZIP51 in regulating salt tolerance. 24-Epibrassinolide treatment alleviates frost damage of apple flower via regulating proline, ROS, and energy metabolism. Molecular mechanisms of nitric oxide regulating high photosynthetic performance of wheat plants in waterlogging at flowering. A transplantation study in the high-altitude ecosystem of Ladakh suggests site-specific microenvironment is key for physiological adaptation than altitude.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1