Victor O. Gawriljuk , Alaa Alhayek , Anna K.H. Hirsch , Matthew R. Groves
{"title":"结核分枝杆菌1-脱氧-d-木质素糖5-磷酸合成酶DXPS的载脂蛋白结构:动力学和抑制剂设计的意义。","authors":"Victor O. Gawriljuk , Alaa Alhayek , Anna K.H. Hirsch , Matthew R. Groves","doi":"10.1016/j.bbrc.2024.151246","DOIUrl":null,"url":null,"abstract":"<div><div>The enzyme 1-deoxy-<span>d</span>-xylulose-5-phosphate synthase (DXPS) catalyses the first step of the MEP pathway, a key process for isoprenoid biosynthesis in bacteria that is absent in humans, making it a promising drug target. We present the structure of <em>Mycobacterium tuberculosis</em> DXPS in its apo form, obtained through a soaking method that removes thiamine diphosphate (ThDP) and metals from pre-formed crystals. The apo structure had three regions with absence of electron density near the active site that are unique to the apo form of the enzyme. Comparisons with other homologous DXPS structures highlight a similar dynamic response to cofactor absence. Despite the increased flexibility, key residues for the activity and ThDP binding retain their positions, preserving the structural integrity of the catalytic core. These findings demonstrate the critical role of ThDP in maintaining DXPS stability and suggest that dynamic structural changes in the apo state may influence inhibitor binding targeting the cofactor site.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"747 ","pages":"Article 151246"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Apo structure of Mycobacterium tuberculosis 1-deoxy-d-xylulose 5-phosphate synthase DXPS: Dynamics and implications for inhibitor design\",\"authors\":\"Victor O. Gawriljuk , Alaa Alhayek , Anna K.H. Hirsch , Matthew R. Groves\",\"doi\":\"10.1016/j.bbrc.2024.151246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The enzyme 1-deoxy-<span>d</span>-xylulose-5-phosphate synthase (DXPS) catalyses the first step of the MEP pathway, a key process for isoprenoid biosynthesis in bacteria that is absent in humans, making it a promising drug target. We present the structure of <em>Mycobacterium tuberculosis</em> DXPS in its apo form, obtained through a soaking method that removes thiamine diphosphate (ThDP) and metals from pre-formed crystals. The apo structure had three regions with absence of electron density near the active site that are unique to the apo form of the enzyme. Comparisons with other homologous DXPS structures highlight a similar dynamic response to cofactor absence. Despite the increased flexibility, key residues for the activity and ThDP binding retain their positions, preserving the structural integrity of the catalytic core. These findings demonstrate the critical role of ThDP in maintaining DXPS stability and suggest that dynamic structural changes in the apo state may influence inhibitor binding targeting the cofactor site.</div></div>\",\"PeriodicalId\":8779,\"journal\":{\"name\":\"Biochemical and biophysical research communications\",\"volume\":\"747 \",\"pages\":\"Article 151246\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical and biophysical research communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006291X24017820\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X24017820","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Apo structure of Mycobacterium tuberculosis 1-deoxy-d-xylulose 5-phosphate synthase DXPS: Dynamics and implications for inhibitor design
The enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXPS) catalyses the first step of the MEP pathway, a key process for isoprenoid biosynthesis in bacteria that is absent in humans, making it a promising drug target. We present the structure of Mycobacterium tuberculosis DXPS in its apo form, obtained through a soaking method that removes thiamine diphosphate (ThDP) and metals from pre-formed crystals. The apo structure had three regions with absence of electron density near the active site that are unique to the apo form of the enzyme. Comparisons with other homologous DXPS structures highlight a similar dynamic response to cofactor absence. Despite the increased flexibility, key residues for the activity and ThDP binding retain their positions, preserving the structural integrity of the catalytic core. These findings demonstrate the critical role of ThDP in maintaining DXPS stability and suggest that dynamic structural changes in the apo state may influence inhibitor binding targeting the cofactor site.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics