丙酮生成到乙醇生成:通过还原乙酸摄取促进NADH氧化。

IF 14.3 1区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Trends in biotechnology Pub Date : 2025-01-07 DOI:10.1016/j.tibtech.2024.11.008
Soyoung Oh, Jiyeong Jeong, Byeonghyeok Park, Byeongchan Kang, Ji-Yeon Kim, Sehoon Park, Dong-Hun Lee, Seunghyeon Jung, Mungyu Lee, Wonjung Lee, Muhammad Yasin, Junhyeok Seo, Zee-Yong Park, Kyung-Hoon Shin, Volker Müller, In-Geol Choi, In Seop Chang
{"title":"丙酮生成到乙醇生成:通过还原乙酸摄取促进NADH氧化。","authors":"Soyoung Oh, Jiyeong Jeong, Byeonghyeok Park, Byeongchan Kang, Ji-Yeon Kim, Sehoon Park, Dong-Hun Lee, Seunghyeon Jung, Mungyu Lee, Wonjung Lee, Muhammad Yasin, Junhyeok Seo, Zee-Yong Park, Kyung-Hoon Shin, Volker Müller, In-Geol Choi, In Seop Chang","doi":"10.1016/j.tibtech.2024.11.008","DOIUrl":null,"url":null,"abstract":"<p><p>(Homo)acetogens, including Clostridium spp., represent an enigma in metabolic flexibility and diversity. Eubacterium callanderi KIST612 is an acetogen that produces n-butyrate with carbon monoxide (CO) as the carbon and energy source; however, the production route is unknown. Here, we report that its distinctive butyrate formation links to reductive acetate uptake, suggesting that acetate (the end-product) is reuptake, leading to a physiological advantage through NADH oxidation. Thus, we introduced an ethanol production pathway from acetyl-CoA as a competitive pathway for butyrate production. Consequently, the metabolic pathway in our mutants switched from acetogenesis to 'ethanologenesis', eliminating butyrate production and the uptake of previously produced acetate. The metabolic shifts occurred toward greater NADH oxidation, facilitating CO oxidation and productivity, which is a survival mechanism at the thermodynamic edge. This metabolic shift to a single product holds potential to revolutionize product separation strategies in synthetic gas (syngas)-based biorefineries.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acetogenesis to ethanologenesis: facilitating NADH oxidation via reductive acetate uptake.\",\"authors\":\"Soyoung Oh, Jiyeong Jeong, Byeonghyeok Park, Byeongchan Kang, Ji-Yeon Kim, Sehoon Park, Dong-Hun Lee, Seunghyeon Jung, Mungyu Lee, Wonjung Lee, Muhammad Yasin, Junhyeok Seo, Zee-Yong Park, Kyung-Hoon Shin, Volker Müller, In-Geol Choi, In Seop Chang\",\"doi\":\"10.1016/j.tibtech.2024.11.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>(Homo)acetogens, including Clostridium spp., represent an enigma in metabolic flexibility and diversity. Eubacterium callanderi KIST612 is an acetogen that produces n-butyrate with carbon monoxide (CO) as the carbon and energy source; however, the production route is unknown. Here, we report that its distinctive butyrate formation links to reductive acetate uptake, suggesting that acetate (the end-product) is reuptake, leading to a physiological advantage through NADH oxidation. Thus, we introduced an ethanol production pathway from acetyl-CoA as a competitive pathway for butyrate production. Consequently, the metabolic pathway in our mutants switched from acetogenesis to 'ethanologenesis', eliminating butyrate production and the uptake of previously produced acetate. The metabolic shifts occurred toward greater NADH oxidation, facilitating CO oxidation and productivity, which is a survival mechanism at the thermodynamic edge. This metabolic shift to a single product holds potential to revolutionize product separation strategies in synthetic gas (syngas)-based biorefineries.</p>\",\"PeriodicalId\":23324,\"journal\":{\"name\":\"Trends in biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tibtech.2024.11.008\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tibtech.2024.11.008","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

(人属)酵母菌,包括梭状芽胞杆菌,在代谢的灵活性和多样性方面是一个谜。callanderi真杆菌KIST612是一种以一氧化碳(CO)为碳源和能量源生产正丁酸盐的acegen;然而,生产路线是未知的。在这里,我们报道其独特的丁酸形成与还原性醋酸摄取有关,表明醋酸(最终产物)是再摄取,通过NADH氧化导致生理优势。因此,我们介绍了从乙酰辅酶a生产乙醇的途径,作为丁酸盐生产的竞争途径。因此,突变体的代谢途径从丙酮生成转变为“乙醇生成”,消除了丁酸盐的产生和先前产生的醋酸盐的吸收。代谢转变发生在更大的NADH氧化,促进CO氧化和生产力,这是热力学边缘的生存机制。这种向单一产品的代谢转变有可能彻底改变基于合成气(syngas)的生物炼油厂的产品分离策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Acetogenesis to ethanologenesis: facilitating NADH oxidation via reductive acetate uptake.

(Homo)acetogens, including Clostridium spp., represent an enigma in metabolic flexibility and diversity. Eubacterium callanderi KIST612 is an acetogen that produces n-butyrate with carbon monoxide (CO) as the carbon and energy source; however, the production route is unknown. Here, we report that its distinctive butyrate formation links to reductive acetate uptake, suggesting that acetate (the end-product) is reuptake, leading to a physiological advantage through NADH oxidation. Thus, we introduced an ethanol production pathway from acetyl-CoA as a competitive pathway for butyrate production. Consequently, the metabolic pathway in our mutants switched from acetogenesis to 'ethanologenesis', eliminating butyrate production and the uptake of previously produced acetate. The metabolic shifts occurred toward greater NADH oxidation, facilitating CO oxidation and productivity, which is a survival mechanism at the thermodynamic edge. This metabolic shift to a single product holds potential to revolutionize product separation strategies in synthetic gas (syngas)-based biorefineries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in biotechnology
Trends in biotechnology 工程技术-生物工程与应用微生物
CiteScore
28.60
自引率
1.20%
发文量
198
审稿时长
1 months
期刊介绍: Trends in Biotechnology publishes reviews and perspectives on the applied biological sciences, focusing on useful science applied to, derived from, or inspired by living systems. The major themes that TIBTECH is interested in include: Bioprocessing (biochemical engineering, applied enzymology, industrial biotechnology, biofuels, metabolic engineering) Omics (genome editing, single-cell technologies, bioinformatics, synthetic biology) Materials and devices (bionanotechnology, biomaterials, diagnostics/imaging/detection, soft robotics, biosensors/bioelectronics) Therapeutics (biofabrication, stem cells, tissue engineering and regenerative medicine, antibodies and other protein drugs, drug delivery) Agroenvironment (environmental engineering, bioremediation, genetically modified crops, sustainable development).
期刊最新文献
Platelet extracellular vesicles-loaded hydrogel bandages for personalized wound care. Automated adjustment of metabolic niches enables the control of natural and engineered microbial co-cultures. Distillation for in situ recovery of volatile fermentation products. Understanding bacterial ecology to combat antibiotic resistance dissemination. High-throughput screening strategies for plastic-depolymerizing enzymes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1