DTI-MHAPR:通过pca增强特征和异构图注意网络优化药物-靶标相互作用预测。

IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS BMC Bioinformatics Pub Date : 2025-01-13 DOI:10.1186/s12859-024-06021-z
Guang Yang, Yinbo Liu, Sijian Wen, Wenxi Chen, Xiaolei Zhu, Yongmei Wang
{"title":"DTI-MHAPR:通过pca增强特征和异构图注意网络优化药物-靶标相互作用预测。","authors":"Guang Yang, Yinbo Liu, Sijian Wen, Wenxi Chen, Xiaolei Zhu, Yongmei Wang","doi":"10.1186/s12859-024-06021-z","DOIUrl":null,"url":null,"abstract":"<p><p>Drug-target interactions (DTIs) are pivotal in drug discovery and development, and their accurate identification can significantly expedite the process. Numerous DTI prediction methods have emerged, yet many fail to fully harness the feature information of drugs and targets or address the issue of feature redundancy. We aim to refine DTI prediction accuracy by eliminating redundant features and capitalizing on the node topological structure to enhance feature extraction. To achieve this, we introduce a PCA-augmented multi-layer heterogeneous graph-based network that concentrates on key features throughout the encoding-decoding phase. Our approach initiates with the construction of a heterogeneous graph from various similarity metrics, which is then encoded via a graph neural network. We concatenate and integrate the resultant representation vectors to merge multi-level information. Subsequently, principal component analysis is applied to distill the most informative features, with the random forest algorithm employed for the final decoding of the integrated data. Our method outperforms six baseline models in terms of accuracy, as demonstrated by extensive experimentation. Comprehensive ablation studies, visualization of results, and in-depth case analyses further validate our framework's efficacy and interpretability, providing a novel tool for drug discovery that integrates multimodal features.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"11"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726937/pdf/","citationCount":"0","resultStr":"{\"title\":\"DTI-MHAPR: optimized drug-target interaction prediction via PCA-enhanced features and heterogeneous graph attention networks.\",\"authors\":\"Guang Yang, Yinbo Liu, Sijian Wen, Wenxi Chen, Xiaolei Zhu, Yongmei Wang\",\"doi\":\"10.1186/s12859-024-06021-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drug-target interactions (DTIs) are pivotal in drug discovery and development, and their accurate identification can significantly expedite the process. Numerous DTI prediction methods have emerged, yet many fail to fully harness the feature information of drugs and targets or address the issue of feature redundancy. We aim to refine DTI prediction accuracy by eliminating redundant features and capitalizing on the node topological structure to enhance feature extraction. To achieve this, we introduce a PCA-augmented multi-layer heterogeneous graph-based network that concentrates on key features throughout the encoding-decoding phase. Our approach initiates with the construction of a heterogeneous graph from various similarity metrics, which is then encoded via a graph neural network. We concatenate and integrate the resultant representation vectors to merge multi-level information. Subsequently, principal component analysis is applied to distill the most informative features, with the random forest algorithm employed for the final decoding of the integrated data. Our method outperforms six baseline models in terms of accuracy, as demonstrated by extensive experimentation. Comprehensive ablation studies, visualization of results, and in-depth case analyses further validate our framework's efficacy and interpretability, providing a novel tool for drug discovery that integrates multimodal features.</p>\",\"PeriodicalId\":8958,\"journal\":{\"name\":\"BMC Bioinformatics\",\"volume\":\"26 1\",\"pages\":\"11\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726937/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12859-024-06021-z\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-06021-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

药物-靶标相互作用(DTIs)是药物发现和开发的关键,它们的准确识别可以显著加快这一过程。目前已经出现了许多DTI预测方法,但许多方法未能充分利用药物和靶标的特征信息或解决特征冗余问题。我们的目标是通过消除冗余特征和利用节点拓扑结构来增强特征提取来提高DTI预测精度。为了实现这一目标,我们引入了一种pca增强的多层异构基于图的网络,该网络专注于整个编码解码阶段的关键特征。我们的方法首先从各种相似度指标构建异构图,然后通过图神经网络对其进行编码。我们将生成的表示向量进行连接和整合,以合并多层次的信息。随后,应用主成分分析提取信息量最大的特征,并采用随机森林算法对综合数据进行最终解码。我们的方法在准确性方面优于六个基线模型,正如广泛的实验所证明的那样。综合消融研究、结果可视化和深入的案例分析进一步验证了我们的框架的有效性和可解释性,为整合多模式特征的药物发现提供了一种新的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DTI-MHAPR: optimized drug-target interaction prediction via PCA-enhanced features and heterogeneous graph attention networks.

Drug-target interactions (DTIs) are pivotal in drug discovery and development, and their accurate identification can significantly expedite the process. Numerous DTI prediction methods have emerged, yet many fail to fully harness the feature information of drugs and targets or address the issue of feature redundancy. We aim to refine DTI prediction accuracy by eliminating redundant features and capitalizing on the node topological structure to enhance feature extraction. To achieve this, we introduce a PCA-augmented multi-layer heterogeneous graph-based network that concentrates on key features throughout the encoding-decoding phase. Our approach initiates with the construction of a heterogeneous graph from various similarity metrics, which is then encoded via a graph neural network. We concatenate and integrate the resultant representation vectors to merge multi-level information. Subsequently, principal component analysis is applied to distill the most informative features, with the random forest algorithm employed for the final decoding of the integrated data. Our method outperforms six baseline models in terms of accuracy, as demonstrated by extensive experimentation. Comprehensive ablation studies, visualization of results, and in-depth case analyses further validate our framework's efficacy and interpretability, providing a novel tool for drug discovery that integrates multimodal features.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Bioinformatics
BMC Bioinformatics 生物-生化研究方法
CiteScore
5.70
自引率
3.30%
发文量
506
审稿时长
4.3 months
期刊介绍: BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology. BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
期刊最新文献
Hybrid generative adversarial network based on frequency and spatial domain for histopathological image synthesis. HDN-DDI: a novel framework for predicting drug-drug interactions using hierarchical molecular graphs and enhanced dual-view representation learning. BAC-browser: the tool for synthetic biology. A comprehensive survey of scoring functions for protein docking models. Joint embedding-classifier learning for interpretable collaborative filtering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1