界面层吸附效应诱导稳定锌阳极均匀沉积

IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Energy Pub Date : 2025-01-21 DOI:10.1016/j.nanoen.2025.110700
Hongchun Mu, Qian He, Zekai Zhang, Hengyi Wang, Hongli Chen, Haiping Su, Juchen Guo, Jingkun Li, Honglai Liu, Cheng Lian
{"title":"界面层吸附效应诱导稳定锌阳极均匀沉积","authors":"Hongchun Mu, Qian He, Zekai Zhang, Hengyi Wang, Hongli Chen, Haiping Su, Juchen Guo, Jingkun Li, Honglai Liu, Cheng Lian","doi":"10.1016/j.nanoen.2025.110700","DOIUrl":null,"url":null,"abstract":"The unfavorable side reactions (<em>e.g.</em>, hydrogen evolution reaction), nonuniform diffusion of Zn<sup>2+</sup> and dendrite growth severely hamper the large-scale applicability of aqueous Zn ion batteries. Herein, we introduce a multifunctional protective layer of porous diatomite (DE) to modify Zn anodes. The chemical bonding and electrostatic interactions of H<sub>2</sub>O with Si-OH groups in DE endow it with a chromatographic column-like layer-by-layer adsorption effect, leading to inhibited hydrogen evolution reaction and accelerated desolvation kinetics of Zn (H<sub>2</sub>O)<sub>6</sub><sup>2+</sup>. Furthermore, the chemically cross-linked structure of Si-O-Zn significantly improves the interfacial stability of the Zn surface, inducing a 3D diffusion of Zn<sup>2+</sup> and a dendrite-free deposition layer. As a result, the DE-modified Zn anode (DE@Zn) enables a long stable cycling of more than 2400<!-- --> <!-- -->h at 1<!-- --> <!-- -->mA<!-- --> <!-- -->cm<sup>−2</sup> in Zn/Zn symmetrical cells. We further demonstrate a DE@Zn//V<sub>2</sub>O<sub>3</sub>@CNFs flexible battery delivering an excellent reversible capacity. This work highlights the importance of the layer-by-layer adsorption mechanism for ion uniform deposition and provides a promising strategy to stabilize metal electrodes.","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"32 1","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interfacial Layer-adsorption Effect Induces Uniform Deposition for Stable Zn Anodes\",\"authors\":\"Hongchun Mu, Qian He, Zekai Zhang, Hengyi Wang, Hongli Chen, Haiping Su, Juchen Guo, Jingkun Li, Honglai Liu, Cheng Lian\",\"doi\":\"10.1016/j.nanoen.2025.110700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The unfavorable side reactions (<em>e.g.</em>, hydrogen evolution reaction), nonuniform diffusion of Zn<sup>2+</sup> and dendrite growth severely hamper the large-scale applicability of aqueous Zn ion batteries. Herein, we introduce a multifunctional protective layer of porous diatomite (DE) to modify Zn anodes. The chemical bonding and electrostatic interactions of H<sub>2</sub>O with Si-OH groups in DE endow it with a chromatographic column-like layer-by-layer adsorption effect, leading to inhibited hydrogen evolution reaction and accelerated desolvation kinetics of Zn (H<sub>2</sub>O)<sub>6</sub><sup>2+</sup>. Furthermore, the chemically cross-linked structure of Si-O-Zn significantly improves the interfacial stability of the Zn surface, inducing a 3D diffusion of Zn<sup>2+</sup> and a dendrite-free deposition layer. As a result, the DE-modified Zn anode (DE@Zn) enables a long stable cycling of more than 2400<!-- --> <!-- -->h at 1<!-- --> <!-- -->mA<!-- --> <!-- -->cm<sup>−2</sup> in Zn/Zn symmetrical cells. We further demonstrate a DE@Zn//V<sub>2</sub>O<sub>3</sub>@CNFs flexible battery delivering an excellent reversible capacity. This work highlights the importance of the layer-by-layer adsorption mechanism for ion uniform deposition and provides a promising strategy to stabilize metal electrodes.\",\"PeriodicalId\":394,\"journal\":{\"name\":\"Nano Energy\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.nanoen.2025.110700\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.nanoen.2025.110700","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

不利的副反应(如析氢反应)、Zn2+的不均匀扩散和枝晶生长严重阻碍了水性锌离子电池的大规模适用性。在此,我们引入了一种多孔硅藻土(DE)多功能保护层来修饰锌阳极。DE中H2O与Si-OH基团的化学键和静电相互作用使其具有层析柱状的层层吸附效应,从而抑制析氢反应,加速Zn (H2O)62+的脱溶动力学。此外,Si-O-Zn的化学交联结构显著提高了Zn表面的界面稳定性,诱导了Zn2+的三维扩散和无枝晶沉积层。因此,de修饰的Zn阳极(DE@Zn)可以在Zn/Zn对称电池中以1ma cm - 2的速度长时间稳定循环2400小时以上。我们进一步展示了一种DE@Zn//V2O3@CNFs柔性电池,提供了出色的可逆容量。这项工作强调了离子均匀沉积的逐层吸附机制的重要性,并为稳定金属电极提供了一种有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interfacial Layer-adsorption Effect Induces Uniform Deposition for Stable Zn Anodes
The unfavorable side reactions (e.g., hydrogen evolution reaction), nonuniform diffusion of Zn2+ and dendrite growth severely hamper the large-scale applicability of aqueous Zn ion batteries. Herein, we introduce a multifunctional protective layer of porous diatomite (DE) to modify Zn anodes. The chemical bonding and electrostatic interactions of H2O with Si-OH groups in DE endow it with a chromatographic column-like layer-by-layer adsorption effect, leading to inhibited hydrogen evolution reaction and accelerated desolvation kinetics of Zn (H2O)62+. Furthermore, the chemically cross-linked structure of Si-O-Zn significantly improves the interfacial stability of the Zn surface, inducing a 3D diffusion of Zn2+ and a dendrite-free deposition layer. As a result, the DE-modified Zn anode (DE@Zn) enables a long stable cycling of more than 2400 h at 1 mA cm−2 in Zn/Zn symmetrical cells. We further demonstrate a DE@Zn//V2O3@CNFs flexible battery delivering an excellent reversible capacity. This work highlights the importance of the layer-by-layer adsorption mechanism for ion uniform deposition and provides a promising strategy to stabilize metal electrodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
期刊最新文献
From Layered Perovskites Oxide to Multifunctional Devices: Recent Progress in 2D Niobate Perovskites for Photonics, Catalysis, and Beyond Recent advances in functionalizing ZIFs and their derived carbon materials towards electrocatalytic water splitting Acoustic Triboelectric Nanogenerator for Underwater Acoustic Communication Fabrication of Nano-Carbon Cages via Molten Salt CO2 Electrolysis for High-Performance Symmetrical Supercapacitor Ferrocene-Driven Revolution in Perovskite Photovoltaics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1