共价有机框架固定化酶:一个强大的工程催化平台,用于各种应用

IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Energy Pub Date : 2025-01-21 DOI:10.1016/j.nanoen.2025.110682
Fengyi Yang, Pengye Zhang, Jiafu Qu, Yahui Cai, Xiaogang Yang, Chang Ming Li, Jundie Hu
{"title":"共价有机框架固定化酶:一个强大的工程催化平台,用于各种应用","authors":"Fengyi Yang, Pengye Zhang, Jiafu Qu, Yahui Cai, Xiaogang Yang, Chang Ming Li, Jundie Hu","doi":"10.1016/j.nanoen.2025.110682","DOIUrl":null,"url":null,"abstract":"Enzymes, as natural catalysts, demonstrate high substrate specificity and catalytic efficiency, making them vital in energy storage, environmental remediation, and health. Consequently, researchers are increasingly focused on developing multifunctional platform that replicate the microenvironments of biological systems. Covalent organic frameworks (COFs)-immobilized enzymes offer a robust platform for catalytic applications due to their well-designed porous structures, molecular editing capabilities, coordinated environments, and excellent biocompatibility. This review offers a comprehensive overview of the robust engineered catalytic platform provided by COFs-immobilized enzymes for diverse catalytic applications. It discusses the advantages of COFs-encapsulated enzyme materials, various strategies for constructing COFs-embedded platforms, methods for functionalized enzyme encapsulation, and strategies for enhancing enzyme activity. Furthermore, it explores recent developments of these materials in diverse catalytic applications, including CO<sub>2</sub> conversion, H<sub>2</sub> production, biocatalysis, tumor therapy, environmental remediation, and organic synthesis reaction. Finally, it highlights the prospects and challenges of COFs-immobilized enzymes for reference.","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"84 1","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Covalent organic framework-immobilized enzymes: A robust engineered catalytic platform for diverse applications\",\"authors\":\"Fengyi Yang, Pengye Zhang, Jiafu Qu, Yahui Cai, Xiaogang Yang, Chang Ming Li, Jundie Hu\",\"doi\":\"10.1016/j.nanoen.2025.110682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enzymes, as natural catalysts, demonstrate high substrate specificity and catalytic efficiency, making them vital in energy storage, environmental remediation, and health. Consequently, researchers are increasingly focused on developing multifunctional platform that replicate the microenvironments of biological systems. Covalent organic frameworks (COFs)-immobilized enzymes offer a robust platform for catalytic applications due to their well-designed porous structures, molecular editing capabilities, coordinated environments, and excellent biocompatibility. This review offers a comprehensive overview of the robust engineered catalytic platform provided by COFs-immobilized enzymes for diverse catalytic applications. It discusses the advantages of COFs-encapsulated enzyme materials, various strategies for constructing COFs-embedded platforms, methods for functionalized enzyme encapsulation, and strategies for enhancing enzyme activity. Furthermore, it explores recent developments of these materials in diverse catalytic applications, including CO<sub>2</sub> conversion, H<sub>2</sub> production, biocatalysis, tumor therapy, environmental remediation, and organic synthesis reaction. Finally, it highlights the prospects and challenges of COFs-immobilized enzymes for reference.\",\"PeriodicalId\":394,\"journal\":{\"name\":\"Nano Energy\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.nanoen.2025.110682\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.nanoen.2025.110682","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

酶作为天然催化剂,具有很高的底物特异性和催化效率,在能量储存、环境修复和健康等方面具有重要意义。因此,研究人员越来越关注于开发复制生物系统微环境的多功能平台。共价有机框架(COFs)固定化酶由于其精心设计的多孔结构、分子编辑能力、协调的环境和出色的生物相容性,为催化应用提供了一个强大的平台。本文综述了cofs固定化酶在多种催化应用中所提供的强大的工程催化平台。讨论了cofs包封酶材料的优点、构建cofs包封平台的各种策略、功能化酶包封的方法以及增强酶活性的策略。此外,它还探讨了这些材料在不同催化应用中的最新进展,包括CO2转化,H2生产,生物催化,肿瘤治疗,环境修复和有机合成反应。最后,重点介绍了cofs固定化酶的研究前景和面临的挑战,以供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Covalent organic framework-immobilized enzymes: A robust engineered catalytic platform for diverse applications
Enzymes, as natural catalysts, demonstrate high substrate specificity and catalytic efficiency, making them vital in energy storage, environmental remediation, and health. Consequently, researchers are increasingly focused on developing multifunctional platform that replicate the microenvironments of biological systems. Covalent organic frameworks (COFs)-immobilized enzymes offer a robust platform for catalytic applications due to their well-designed porous structures, molecular editing capabilities, coordinated environments, and excellent biocompatibility. This review offers a comprehensive overview of the robust engineered catalytic platform provided by COFs-immobilized enzymes for diverse catalytic applications. It discusses the advantages of COFs-encapsulated enzyme materials, various strategies for constructing COFs-embedded platforms, methods for functionalized enzyme encapsulation, and strategies for enhancing enzyme activity. Furthermore, it explores recent developments of these materials in diverse catalytic applications, including CO2 conversion, H2 production, biocatalysis, tumor therapy, environmental remediation, and organic synthesis reaction. Finally, it highlights the prospects and challenges of COFs-immobilized enzymes for reference.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
期刊最新文献
From Layered Perovskites Oxide to Multifunctional Devices: Recent Progress in 2D Niobate Perovskites for Photonics, Catalysis, and Beyond Recent advances in functionalizing ZIFs and their derived carbon materials towards electrocatalytic water splitting Acoustic Triboelectric Nanogenerator for Underwater Acoustic Communication Fabrication of Nano-Carbon Cages via Molten Salt CO2 Electrolysis for High-Performance Symmetrical Supercapacitor Ferrocene-Driven Revolution in Perovskite Photovoltaics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1