提高太阳能电池能源效率的辐射冷却技术:材料、系统和前景

IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Energy Pub Date : 2025-01-21 DOI:10.1016/j.nanoen.2025.110680
Jia Wei, Hao Chen, Jingchong Liu, Fuqiang Wang, Cunhai Wang
{"title":"提高太阳能电池能源效率的辐射冷却技术:材料、系统和前景","authors":"Jia Wei, Hao Chen, Jingchong Liu, Fuqiang Wang, Cunhai Wang","doi":"10.1016/j.nanoen.2025.110680","DOIUrl":null,"url":null,"abstract":"Solar cells (SCs) convert sunlight directly into electricity via the photovoltaic (PV) effect, paving a fossil fuel-free way to meet the increasing demand for renewable sources. However, most solar radiation (~ 80%) is transformed into thermal parasites that heat solar panels, significantly degrading the efficiency and life span of SCs. Passive sky radiative cooling (RC), which cools terrestrial objects by dissipating excessive thermal emission into the ultracold (~ 3<!-- --> <!-- -->K) space, appears as an emerging cooling technology and has attracted considerable attention. As SCs are predominantly engaged in PV conversion during daytime, the incorporation of RC technology enables temperature decrease, subsequently boosting solar-to-electricity efficiency. Besides, integrating RC into SCs allows night cold harvesting that could be employed for daytime thermal management, further improving energy efficiency. Therefore, integrating RC with SCs represents a promising, energy-free way towards enhanced energy efficiency. This review commences with the energy balance within SCs and fundamental principles of RC technologies, summarizes remarkable daytime RC materials for temperature reduction and efficiency improvement of SCs, continues with innovative PV systems that integrate nighttime RC technologies, and finally ends with challenges and perspectives towards enhanced energy efficiency in PV systems via passive RC technologies.","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"57 1","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiative cooling technologies toward enhanced energy efficiency of solar cells: Materials, systems, and perspectives\",\"authors\":\"Jia Wei, Hao Chen, Jingchong Liu, Fuqiang Wang, Cunhai Wang\",\"doi\":\"10.1016/j.nanoen.2025.110680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar cells (SCs) convert sunlight directly into electricity via the photovoltaic (PV) effect, paving a fossil fuel-free way to meet the increasing demand for renewable sources. However, most solar radiation (~ 80%) is transformed into thermal parasites that heat solar panels, significantly degrading the efficiency and life span of SCs. Passive sky radiative cooling (RC), which cools terrestrial objects by dissipating excessive thermal emission into the ultracold (~ 3<!-- --> <!-- -->K) space, appears as an emerging cooling technology and has attracted considerable attention. As SCs are predominantly engaged in PV conversion during daytime, the incorporation of RC technology enables temperature decrease, subsequently boosting solar-to-electricity efficiency. Besides, integrating RC into SCs allows night cold harvesting that could be employed for daytime thermal management, further improving energy efficiency. Therefore, integrating RC with SCs represents a promising, energy-free way towards enhanced energy efficiency. This review commences with the energy balance within SCs and fundamental principles of RC technologies, summarizes remarkable daytime RC materials for temperature reduction and efficiency improvement of SCs, continues with innovative PV systems that integrate nighttime RC technologies, and finally ends with challenges and perspectives towards enhanced energy efficiency in PV systems via passive RC technologies.\",\"PeriodicalId\":394,\"journal\":{\"name\":\"Nano Energy\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.nanoen.2025.110680\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.nanoen.2025.110680","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

太阳能电池(SCs)通过光伏(PV)效应将阳光直接转化为电能,为满足日益增长的对可再生能源的需求铺平了一条无化石燃料的道路。然而,大部分太阳辐射(~ 80%)被转化为热寄生虫,加热太阳能电池板,显著降低了太阳能电池的效率和寿命。被动天空辐射冷却(RC)是一种新兴的冷却技术,它通过将过多的热辐射消散到超冷(~ 3k)空间来冷却地面物体,并引起了人们的广泛关注。由于sc主要在白天进行PV转换,因此结合RC技术可以降低温度,从而提高太阳能发电效率。此外,将RC集成到SCs中可以将夜间的冷收集用于白天的热管理,进一步提高能源效率。因此,将RC与SCs相结合代表了一种有前途的、无能源的提高能源效率的方法。本文从太阳能电池板内的能量平衡和太阳能电池板技术的基本原理开始,总结了用于太阳能电池板降温和提高效率的日间太阳能电池板材料,接着介绍了集成夜间太阳能电池板技术的创新光伏系统,最后介绍了通过被动太阳能电池板技术提高太阳能电池板系统能效的挑战和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Radiative cooling technologies toward enhanced energy efficiency of solar cells: Materials, systems, and perspectives
Solar cells (SCs) convert sunlight directly into electricity via the photovoltaic (PV) effect, paving a fossil fuel-free way to meet the increasing demand for renewable sources. However, most solar radiation (~ 80%) is transformed into thermal parasites that heat solar panels, significantly degrading the efficiency and life span of SCs. Passive sky radiative cooling (RC), which cools terrestrial objects by dissipating excessive thermal emission into the ultracold (~ 3 K) space, appears as an emerging cooling technology and has attracted considerable attention. As SCs are predominantly engaged in PV conversion during daytime, the incorporation of RC technology enables temperature decrease, subsequently boosting solar-to-electricity efficiency. Besides, integrating RC into SCs allows night cold harvesting that could be employed for daytime thermal management, further improving energy efficiency. Therefore, integrating RC with SCs represents a promising, energy-free way towards enhanced energy efficiency. This review commences with the energy balance within SCs and fundamental principles of RC technologies, summarizes remarkable daytime RC materials for temperature reduction and efficiency improvement of SCs, continues with innovative PV systems that integrate nighttime RC technologies, and finally ends with challenges and perspectives towards enhanced energy efficiency in PV systems via passive RC technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
期刊最新文献
From Layered Perovskites Oxide to Multifunctional Devices: Recent Progress in 2D Niobate Perovskites for Photonics, Catalysis, and Beyond Recent advances in functionalizing ZIFs and their derived carbon materials towards electrocatalytic water splitting Acoustic Triboelectric Nanogenerator for Underwater Acoustic Communication Fabrication of Nano-Carbon Cages via Molten Salt CO2 Electrolysis for High-Performance Symmetrical Supercapacitor Ferrocene-Driven Revolution in Perovskite Photovoltaics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1