超级电容器用未掺杂和杂原子掺杂菖蒲活性炭的制备

IF 2.8 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Materials Science: Materials in Electronics Pub Date : 2025-01-15 DOI:10.1007/s10854-024-14165-0
R. Birundha, Lakshman Neelakantan, Y. Vidyalakshmi
{"title":"超级电容器用未掺杂和杂原子掺杂菖蒲活性炭的制备","authors":"R. Birundha,&nbsp;Lakshman Neelakantan,&nbsp;Y. Vidyalakshmi","doi":"10.1007/s10854-024-14165-0","DOIUrl":null,"url":null,"abstract":"<div><p>A class of carbonaceous material called “activated carbon” (AC), gained a remarkable attention in the field of renewable energy storage technology such as supercapacitor (SC) due to the enhanced performance than the other commercial carbons. In particular, activated carbon derived from biomass gained a significant potential owing to its tunable physical/chemical properties, low-cost raw material and abundance around us. Herein, sweet flag (Acorus <i>Calamus</i>) derived hierarchical porous carbons with different weight percentage of activating agent (Potassium Hydroxide—KOH) and heteroatoms (thiourea) such as 30, 40 and 50 wt% are prepared through a simple hydrothermal technique. This work also aims to study the synergistic effect of undoped and nitrogen/sulfur-doped porous activated carbon for supercapacitor applications. From the obtained results, the high surface area, well-developed pores and doping of nitrogen and sulfur into AC are confirmed from Brunauer–Emmett–Teller (BET) and Field Emission Scanning Electron Microscopy (FESEM) analysis. X-ray Photoelectron spectroscopy (XPS) study reveals the chemical bond that exist between different elements in the prepared activated carbon. The electrochemical characterization of all the samples exhibits electrochemical double layer behavior and among all, the undoped activated carbon derived out of 30 wt% KOH shows higher specific capacitance value of 420 F/g at 1 A/g in H<sub>2</sub>SO<sub>4</sub> electrolyte in three electrodes set up. Also, the stability test reveals good capacitive retention of 94% even after 5000 charge and discharge cycles at a current density of 5 A/g and disclose the potential of sweet flag derived AC for SC applications.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"36 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of undoped and heteroatom-doped activated carbon derived from Acorus Calamus for supercapacitor applications\",\"authors\":\"R. Birundha,&nbsp;Lakshman Neelakantan,&nbsp;Y. Vidyalakshmi\",\"doi\":\"10.1007/s10854-024-14165-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A class of carbonaceous material called “activated carbon” (AC), gained a remarkable attention in the field of renewable energy storage technology such as supercapacitor (SC) due to the enhanced performance than the other commercial carbons. In particular, activated carbon derived from biomass gained a significant potential owing to its tunable physical/chemical properties, low-cost raw material and abundance around us. Herein, sweet flag (Acorus <i>Calamus</i>) derived hierarchical porous carbons with different weight percentage of activating agent (Potassium Hydroxide—KOH) and heteroatoms (thiourea) such as 30, 40 and 50 wt% are prepared through a simple hydrothermal technique. This work also aims to study the synergistic effect of undoped and nitrogen/sulfur-doped porous activated carbon for supercapacitor applications. From the obtained results, the high surface area, well-developed pores and doping of nitrogen and sulfur into AC are confirmed from Brunauer–Emmett–Teller (BET) and Field Emission Scanning Electron Microscopy (FESEM) analysis. X-ray Photoelectron spectroscopy (XPS) study reveals the chemical bond that exist between different elements in the prepared activated carbon. The electrochemical characterization of all the samples exhibits electrochemical double layer behavior and among all, the undoped activated carbon derived out of 30 wt% KOH shows higher specific capacitance value of 420 F/g at 1 A/g in H<sub>2</sub>SO<sub>4</sub> electrolyte in three electrodes set up. Also, the stability test reveals good capacitive retention of 94% even after 5000 charge and discharge cycles at a current density of 5 A/g and disclose the potential of sweet flag derived AC for SC applications.</p></div>\",\"PeriodicalId\":646,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Electronics\",\"volume\":\"36 2\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10854-024-14165-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-024-14165-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

活性炭(AC)是一类碳质材料,由于其性能优于其他商用碳,在超级电容器(SC)等可再生能源存储技术领域受到了极大的关注。特别是,从生物质中提取的活性炭由于其可调的物理/化学性质,低成本的原材料和我们周围的丰富而获得了巨大的潜力。本文通过简单的水热技术制备了不同质量百分比的活化剂(氢氧化钾- koh)和杂原子(硫脲)(30%、40%和50% wt%)的糖旗(Acorus Calamus)衍生的分层多孔碳。本工作还旨在研究未掺杂和氮/硫掺杂多孔活性炭在超级电容器应用中的协同效应。从所得结果看,通过布鲁诺尔-埃米特-泰勒(BET)和场发射扫描电镜(FESEM)分析,证实了AC具有高表面积、发育良好的孔隙和氮、硫的掺杂。x射线光电子能谱(XPS)研究揭示了所制备活性炭中不同元素之间存在的化学键。样品的电化学表征均表现为双电化学层行为,其中KOH浓度为30 wt%的未掺杂活性炭在H2SO4电解液中,在1 A/g条件下,在3个电极中表现出较高的比电容值420 F/g。此外,稳定性测试显示,即使在5000次充放电循环后,在5 a /g的电流密度下,电容保持率仍为94%,并揭示了SC应用中甜旗衍生AC的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preparation of undoped and heteroatom-doped activated carbon derived from Acorus Calamus for supercapacitor applications

A class of carbonaceous material called “activated carbon” (AC), gained a remarkable attention in the field of renewable energy storage technology such as supercapacitor (SC) due to the enhanced performance than the other commercial carbons. In particular, activated carbon derived from biomass gained a significant potential owing to its tunable physical/chemical properties, low-cost raw material and abundance around us. Herein, sweet flag (Acorus Calamus) derived hierarchical porous carbons with different weight percentage of activating agent (Potassium Hydroxide—KOH) and heteroatoms (thiourea) such as 30, 40 and 50 wt% are prepared through a simple hydrothermal technique. This work also aims to study the synergistic effect of undoped and nitrogen/sulfur-doped porous activated carbon for supercapacitor applications. From the obtained results, the high surface area, well-developed pores and doping of nitrogen and sulfur into AC are confirmed from Brunauer–Emmett–Teller (BET) and Field Emission Scanning Electron Microscopy (FESEM) analysis. X-ray Photoelectron spectroscopy (XPS) study reveals the chemical bond that exist between different elements in the prepared activated carbon. The electrochemical characterization of all the samples exhibits electrochemical double layer behavior and among all, the undoped activated carbon derived out of 30 wt% KOH shows higher specific capacitance value of 420 F/g at 1 A/g in H2SO4 electrolyte in three electrodes set up. Also, the stability test reveals good capacitive retention of 94% even after 5000 charge and discharge cycles at a current density of 5 A/g and disclose the potential of sweet flag derived AC for SC applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science: Materials in Electronics
Journal of Materials Science: Materials in Electronics 工程技术-材料科学:综合
CiteScore
5.00
自引率
7.10%
发文量
1931
审稿时长
2 months
期刊介绍: The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.
期刊最新文献
Phase regulated design strategy of antiferroelectric Cd-modified (Pb, La) (Sn, Zr, Ti) O3 ceramics for pulsed power capacitors Random vibration lifetime prediction model based on overshoot correction for metal hermetic sealing structure considering transient response Additively manufactured polyethylene terephthalate-based high-gain multiband-flexible antenna for wireless mobile applications Fabricating In2O3 NPs /MWCNTs heterostructure photodetectors by laser ablation method Rational design of CoNiMo trimetallic hydroxide nanostructured flexible electrode for supercapacitor application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1