增材制造的基于聚对苯二甲酸乙二醇酯的高增益多波段柔性天线,用于无线移动应用

IF 2.8 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Materials Science: Materials in Electronics Pub Date : 2025-01-22 DOI:10.1007/s10854-024-14194-9
Arshad Hassan, Ahtesham Saeed, Shawkat Ali, Hammad M. Cheema, Amine Bermak
{"title":"增材制造的基于聚对苯二甲酸乙二醇酯的高增益多波段柔性天线,用于无线移动应用","authors":"Arshad Hassan,&nbsp;Ahtesham Saeed,&nbsp;Shawkat Ali,&nbsp;Hammad M. Cheema,&nbsp;Amine Bermak","doi":"10.1007/s10854-024-14194-9","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a novel additively manufactured antenna array on a flexible polymeric substrate for conformal mobile applications. The antenna consists of two identical z-shape patch elements integrated with symmetrical arrangements and right-angle ground assemblies to converge the dispersed radiation pattern for gain improvement. For planar feeding and fabrication, the antenna is fed with a coplanar waveguide and, horizontal defected ground structures are used in the patch to achieve multiband characteristics. The prototype antenna, fabricated with silver nanoparticles (AgNPs) using precision piezoelectric inkjet-printing technique, exhibited operation across five different frequency bands: 0.58–0.83 GHz, 1.39–1.58 GHz, 2.40–2.43 GHz, 2.88–3.52 GHz, and 4.93–5.15 GHz, covering mobile radios, GPS, UMTS, Wi-Fi, ISM, Bluetooth, WLAN, WiMAX, and sub-6 GHz 5G applications. Surface morphological studies of deposited conductive pattern of silver nanoparticles are also evaluated to confirm its smooth and uniform deposition. The antenna demonstrates an omnidirectional pattern with a peak gain of 12 dBi at 3.21 GHz and a measured impedance bandwidth of 640 MHz that show a good agreement with the simulation. The prototype antenna is also tested under bent conditions (radius of 3, 4, and 5 cm) and, the measured performance depicts apart from the minor shift in S11, it still performs sufficiently well. Comparison with existing literature reveals a significant improvement in gain, making this antenna superior in performance. The antenna’s robust performance under deformation, combined with its high gain and multiband capabilities, makes it excellent candidate for wearable electronics and conformal wireless mobile communication applications. This work paves the way for future advancements in flexible and high-performance antennas for next-generation wireless technologies.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"36 3","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10854-024-14194-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Additively manufactured polyethylene terephthalate-based high-gain multiband-flexible antenna for wireless mobile applications\",\"authors\":\"Arshad Hassan,&nbsp;Ahtesham Saeed,&nbsp;Shawkat Ali,&nbsp;Hammad M. Cheema,&nbsp;Amine Bermak\",\"doi\":\"10.1007/s10854-024-14194-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a novel additively manufactured antenna array on a flexible polymeric substrate for conformal mobile applications. The antenna consists of two identical z-shape patch elements integrated with symmetrical arrangements and right-angle ground assemblies to converge the dispersed radiation pattern for gain improvement. For planar feeding and fabrication, the antenna is fed with a coplanar waveguide and, horizontal defected ground structures are used in the patch to achieve multiband characteristics. The prototype antenna, fabricated with silver nanoparticles (AgNPs) using precision piezoelectric inkjet-printing technique, exhibited operation across five different frequency bands: 0.58–0.83 GHz, 1.39–1.58 GHz, 2.40–2.43 GHz, 2.88–3.52 GHz, and 4.93–5.15 GHz, covering mobile radios, GPS, UMTS, Wi-Fi, ISM, Bluetooth, WLAN, WiMAX, and sub-6 GHz 5G applications. Surface morphological studies of deposited conductive pattern of silver nanoparticles are also evaluated to confirm its smooth and uniform deposition. The antenna demonstrates an omnidirectional pattern with a peak gain of 12 dBi at 3.21 GHz and a measured impedance bandwidth of 640 MHz that show a good agreement with the simulation. The prototype antenna is also tested under bent conditions (radius of 3, 4, and 5 cm) and, the measured performance depicts apart from the minor shift in S11, it still performs sufficiently well. Comparison with existing literature reveals a significant improvement in gain, making this antenna superior in performance. The antenna’s robust performance under deformation, combined with its high gain and multiband capabilities, makes it excellent candidate for wearable electronics and conformal wireless mobile communication applications. This work paves the way for future advancements in flexible and high-performance antennas for next-generation wireless technologies.</p></div>\",\"PeriodicalId\":646,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Electronics\",\"volume\":\"36 3\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10854-024-14194-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10854-024-14194-9\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-024-14194-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种在柔性聚合物基板上增材制造的新型天线阵列,用于共形移动应用。该天线由两个相同的z形贴片单元组成,对称布置和直角地面组件集成,以收敛分散的辐射方向图以提高增益。在平面馈电和制造中,天线采用共面波导馈电,在贴片中采用水平缺陷接地结构来实现多波段特性。该原型天线采用精密压电喷墨打印技术,由银纳米粒子(AgNPs)制成,可在0.58-0.83 GHz、1.39-1.58 GHz、2.40-2.43 GHz、2.88-3.52 GHz和4.93-5.15 GHz五个不同频段运行,涵盖移动无线电、GPS、UMTS、Wi-Fi、ISM、蓝牙、WLAN、WiMAX和sub-6 GHz 5G应用。同时对银纳米粒子的导电模式进行了表面形态学研究,证实了银纳米粒子的沉积是光滑均匀的。该天线在3.21 GHz时的峰值增益为12 dBi,测量阻抗带宽为640 MHz,与仿真结果吻合较好。原型天线还在弯曲条件下进行了测试(半径为3,4和5厘米),并且,测量的性能表明,除了S11中的小位移外,它仍然表现良好。与现有文献相比,增益有了显著提高,使该天线具有优越的性能。该天线在变形下的强大性能,加上其高增益和多频段能力,使其成为可穿戴电子产品和保形无线移动通信应用的优秀候选者。这项工作为下一代无线技术的灵活和高性能天线的未来发展铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Additively manufactured polyethylene terephthalate-based high-gain multiband-flexible antenna for wireless mobile applications

This paper presents a novel additively manufactured antenna array on a flexible polymeric substrate for conformal mobile applications. The antenna consists of two identical z-shape patch elements integrated with symmetrical arrangements and right-angle ground assemblies to converge the dispersed radiation pattern for gain improvement. For planar feeding and fabrication, the antenna is fed with a coplanar waveguide and, horizontal defected ground structures are used in the patch to achieve multiband characteristics. The prototype antenna, fabricated with silver nanoparticles (AgNPs) using precision piezoelectric inkjet-printing technique, exhibited operation across five different frequency bands: 0.58–0.83 GHz, 1.39–1.58 GHz, 2.40–2.43 GHz, 2.88–3.52 GHz, and 4.93–5.15 GHz, covering mobile radios, GPS, UMTS, Wi-Fi, ISM, Bluetooth, WLAN, WiMAX, and sub-6 GHz 5G applications. Surface morphological studies of deposited conductive pattern of silver nanoparticles are also evaluated to confirm its smooth and uniform deposition. The antenna demonstrates an omnidirectional pattern with a peak gain of 12 dBi at 3.21 GHz and a measured impedance bandwidth of 640 MHz that show a good agreement with the simulation. The prototype antenna is also tested under bent conditions (radius of 3, 4, and 5 cm) and, the measured performance depicts apart from the minor shift in S11, it still performs sufficiently well. Comparison with existing literature reveals a significant improvement in gain, making this antenna superior in performance. The antenna’s robust performance under deformation, combined with its high gain and multiband capabilities, makes it excellent candidate for wearable electronics and conformal wireless mobile communication applications. This work paves the way for future advancements in flexible and high-performance antennas for next-generation wireless technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science: Materials in Electronics
Journal of Materials Science: Materials in Electronics 工程技术-材料科学:综合
CiteScore
5.00
自引率
7.10%
发文量
1931
审稿时长
2 months
期刊介绍: The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.
期刊最新文献
Phase regulated design strategy of antiferroelectric Cd-modified (Pb, La) (Sn, Zr, Ti) O3 ceramics for pulsed power capacitors Random vibration lifetime prediction model based on overshoot correction for metal hermetic sealing structure considering transient response Additively manufactured polyethylene terephthalate-based high-gain multiband-flexible antenna for wireless mobile applications Fabricating In2O3 NPs /MWCNTs heterostructure photodetectors by laser ablation method Rational design of CoNiMo trimetallic hydroxide nanostructured flexible electrode for supercapacitor application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1