Dhekra Saeed, Huanlai Xing, Barakat AlBadani, Li Feng, Raeed Al-Sabri, Monir Abdullah, Amir Rehman
{"title":"基于自适应融合的多通道图注意网络癌症药物反应预测。","authors":"Dhekra Saeed, Huanlai Xing, Barakat AlBadani, Li Feng, Raeed Al-Sabri, Monir Abdullah, Amir Rehman","doi":"10.1186/s12859-024-05987-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Drug response prediction is critical in precision medicine to determine the most effective and safe treatments for individual patients. Traditional prediction methods relying on demographic and genetic data often fall short in accuracy and robustness. Recent graph-based models, while promising, frequently neglect the critical role of atomic interactions and fail to integrate drug fingerprints with SMILES for comprehensive molecular graph construction.</p><p><strong>Results: </strong>We introduce multimodal multi-channel graph attention network with adaptive fusion (MGATAF), a framework designed to enhance drug response predictions by capturing both local and global interactions among graph nodes. MGATAF improves drug representation by integrating SMILES and fingerprints, resulting in more precise predictions of drug effects. The methodology involves constructing multimodal molecular graphs, employing multi-channel graph attention networks to capture diverse interactions, and using adaptive fusion to integrate these interactions at multiple abstraction levels. Empirical results demonstrate MGATAF's superior performance compared to traditional and other graph-based techniques. For example, on the GDSC dataset, MGATAF achieved a 5.12% improvement in the Pearson correlation coefficient (PCC), reaching 0.9312 with an RMSE of 0.0225. Similarly, in new cell-line tests, MGATAF outperformed baselines with a PCC of 0.8536 and an RMSE of 0.0321 on the GDSC dataset, and a PCC of 0.7364 with an RMSE of 0.0531 on the CCLE dataset.</p><p><strong>Conclusions: </strong>MGATAF significantly advances drug response prediction by effectively integrating multiple molecular data types and capturing complex interactions. This framework enhances prediction accuracy and offers a robust tool for personalized medicine, potentially leading to more effective and safer treatments for patients. Future research can expand on this work by exploring additional data modalities and refining the adaptive fusion mechanisms.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"19"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742231/pdf/","citationCount":"0","resultStr":"{\"title\":\"MGATAF: multi-channel graph attention network with adaptive fusion for cancer-drug response prediction.\",\"authors\":\"Dhekra Saeed, Huanlai Xing, Barakat AlBadani, Li Feng, Raeed Al-Sabri, Monir Abdullah, Amir Rehman\",\"doi\":\"10.1186/s12859-024-05987-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Drug response prediction is critical in precision medicine to determine the most effective and safe treatments for individual patients. Traditional prediction methods relying on demographic and genetic data often fall short in accuracy and robustness. Recent graph-based models, while promising, frequently neglect the critical role of atomic interactions and fail to integrate drug fingerprints with SMILES for comprehensive molecular graph construction.</p><p><strong>Results: </strong>We introduce multimodal multi-channel graph attention network with adaptive fusion (MGATAF), a framework designed to enhance drug response predictions by capturing both local and global interactions among graph nodes. MGATAF improves drug representation by integrating SMILES and fingerprints, resulting in more precise predictions of drug effects. The methodology involves constructing multimodal molecular graphs, employing multi-channel graph attention networks to capture diverse interactions, and using adaptive fusion to integrate these interactions at multiple abstraction levels. Empirical results demonstrate MGATAF's superior performance compared to traditional and other graph-based techniques. For example, on the GDSC dataset, MGATAF achieved a 5.12% improvement in the Pearson correlation coefficient (PCC), reaching 0.9312 with an RMSE of 0.0225. Similarly, in new cell-line tests, MGATAF outperformed baselines with a PCC of 0.8536 and an RMSE of 0.0321 on the GDSC dataset, and a PCC of 0.7364 with an RMSE of 0.0531 on the CCLE dataset.</p><p><strong>Conclusions: </strong>MGATAF significantly advances drug response prediction by effectively integrating multiple molecular data types and capturing complex interactions. This framework enhances prediction accuracy and offers a robust tool for personalized medicine, potentially leading to more effective and safer treatments for patients. Future research can expand on this work by exploring additional data modalities and refining the adaptive fusion mechanisms.</p>\",\"PeriodicalId\":8958,\"journal\":{\"name\":\"BMC Bioinformatics\",\"volume\":\"26 1\",\"pages\":\"19\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742231/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12859-024-05987-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-05987-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
MGATAF: multi-channel graph attention network with adaptive fusion for cancer-drug response prediction.
Background: Drug response prediction is critical in precision medicine to determine the most effective and safe treatments for individual patients. Traditional prediction methods relying on demographic and genetic data often fall short in accuracy and robustness. Recent graph-based models, while promising, frequently neglect the critical role of atomic interactions and fail to integrate drug fingerprints with SMILES for comprehensive molecular graph construction.
Results: We introduce multimodal multi-channel graph attention network with adaptive fusion (MGATAF), a framework designed to enhance drug response predictions by capturing both local and global interactions among graph nodes. MGATAF improves drug representation by integrating SMILES and fingerprints, resulting in more precise predictions of drug effects. The methodology involves constructing multimodal molecular graphs, employing multi-channel graph attention networks to capture diverse interactions, and using adaptive fusion to integrate these interactions at multiple abstraction levels. Empirical results demonstrate MGATAF's superior performance compared to traditional and other graph-based techniques. For example, on the GDSC dataset, MGATAF achieved a 5.12% improvement in the Pearson correlation coefficient (PCC), reaching 0.9312 with an RMSE of 0.0225. Similarly, in new cell-line tests, MGATAF outperformed baselines with a PCC of 0.8536 and an RMSE of 0.0321 on the GDSC dataset, and a PCC of 0.7364 with an RMSE of 0.0531 on the CCLE dataset.
Conclusions: MGATAF significantly advances drug response prediction by effectively integrating multiple molecular data types and capturing complex interactions. This framework enhances prediction accuracy and offers a robust tool for personalized medicine, potentially leading to more effective and safer treatments for patients. Future research can expand on this work by exploring additional data modalities and refining the adaptive fusion mechanisms.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.