水杨酸能减轻杀菌剂异苯唑的生理生化毒性,减少其在小麦体内的积累。

IF 6.1 2区 生物学 Q1 PLANT SCIENCES Plant Physiology and Biochemistry Pub Date : 2025-01-16 DOI:10.1016/j.plaphy.2025.109504
Jingchong Li, Wende Zheng, Jingkun Li, Komelle Askari, Zhixiang Tian, Runqiang Liu
{"title":"水杨酸能减轻杀菌剂异苯唑的生理生化毒性,减少其在小麦体内的积累。","authors":"Jingchong Li, Wende Zheng, Jingkun Li, Komelle Askari, Zhixiang Tian, Runqiang Liu","doi":"10.1016/j.plaphy.2025.109504","DOIUrl":null,"url":null,"abstract":"<p><p>Continuous misuse of difenoconazole (DFZ) results in farmland contamination, posing risks to crops and human health. Salicylic acid (SA) has been shown to enhance plant resistance and reduce pesticide phytotoxicity and accumulation. However, whether SA effectively reduces DFZ phytotoxicity and accumulation and its underlying mechanisms remain poorly understood. To address this, a short-term indoor experiment and a long-term outdoor pot experiment were conducted to evaluate the potential of SA to alleviate DFZ-induced phytotoxicity and its effects on DFZ uptake, translocation, metabolism, and accumulation. The underlying mechanisms were explored through physiological, biochemical, and gene expression analyses. The results showed that DFZ induced oxidative damage and reduced photosynthesis by 15.6% in wheat. SA upregulated the expression of genes encoding antioxidant enzymes (POD, CAT, SOD1, and SOD2) in the roots and leaves of DFZ-exposed plants, leading to a 7.5%-13.4% increase in antioxidant enzyme activities and a subsequent 9.7%-14.5% decrease in reactive oxygen species levels. Additionally, SA increased the total chlorophyll content by 16.3%, which was enhanced by regulating chlorophyll synthesis and degradation-related genes, thereby improving the net photosynthetic rate by 12.2%. Furthermore, SA upregulated the expression of lignin biosynthesis-related, CYP450, and GST genes, which reduced DFZ uptake and accelerated its degradation. Consequently, the wheat grain DFZ content decreased by 36.2%, thus reducing the health risk index. This study confirms the potential of SA to reduce DFZ phytotoxicity and accumulation. Based on these findings, we recommend using SA in DFZ-contaminated areas to mitigate phytotoxicity and the associated human dietary exposure risks.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109504"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Salicylic acid mitigates the physiological and biochemistry toxicity of fungicide difenoconazole and reduces its accumulation in wheat (Triticum aestivum L.).\",\"authors\":\"Jingchong Li, Wende Zheng, Jingkun Li, Komelle Askari, Zhixiang Tian, Runqiang Liu\",\"doi\":\"10.1016/j.plaphy.2025.109504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Continuous misuse of difenoconazole (DFZ) results in farmland contamination, posing risks to crops and human health. Salicylic acid (SA) has been shown to enhance plant resistance and reduce pesticide phytotoxicity and accumulation. However, whether SA effectively reduces DFZ phytotoxicity and accumulation and its underlying mechanisms remain poorly understood. To address this, a short-term indoor experiment and a long-term outdoor pot experiment were conducted to evaluate the potential of SA to alleviate DFZ-induced phytotoxicity and its effects on DFZ uptake, translocation, metabolism, and accumulation. The underlying mechanisms were explored through physiological, biochemical, and gene expression analyses. The results showed that DFZ induced oxidative damage and reduced photosynthesis by 15.6% in wheat. SA upregulated the expression of genes encoding antioxidant enzymes (POD, CAT, SOD1, and SOD2) in the roots and leaves of DFZ-exposed plants, leading to a 7.5%-13.4% increase in antioxidant enzyme activities and a subsequent 9.7%-14.5% decrease in reactive oxygen species levels. Additionally, SA increased the total chlorophyll content by 16.3%, which was enhanced by regulating chlorophyll synthesis and degradation-related genes, thereby improving the net photosynthetic rate by 12.2%. Furthermore, SA upregulated the expression of lignin biosynthesis-related, CYP450, and GST genes, which reduced DFZ uptake and accelerated its degradation. Consequently, the wheat grain DFZ content decreased by 36.2%, thus reducing the health risk index. This study confirms the potential of SA to reduce DFZ phytotoxicity and accumulation. Based on these findings, we recommend using SA in DFZ-contaminated areas to mitigate phytotoxicity and the associated human dietary exposure risks.</p>\",\"PeriodicalId\":20234,\"journal\":{\"name\":\"Plant Physiology and Biochemistry\",\"volume\":\"220 \",\"pages\":\"109504\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology and Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.plaphy.2025.109504\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2025.109504","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

持续滥用双苯醚康唑造成农田污染,对作物和人类健康构成风险。水杨酸(SA)已被证明具有增强植物抗性和降低农药毒性和积累的作用。然而,SA是否能有效降低DFZ的植物毒性和积累及其潜在机制尚不清楚。为了解决这一问题,我们进行了短期室内试验和长期室外盆栽试验,以评估SA减轻DFZ诱导的植物毒性的潜力及其对DFZ吸收、转运、代谢和积累的影响。通过生理、生化和基因表达分析探讨其潜在机制。结果表明:DFZ诱导小麦氧化损伤,使光合作用降低15.6%;SA上调了dfz暴露植物根系和叶片中编码抗氧化酶(POD、CAT、SOD1和SOD2)基因的表达,导致抗氧化酶活性增加7.5%-13.4%,随后活性氧水平下降9.7%-14.5%。此外,SA通过调节叶绿素合成和降解相关基因,使总叶绿素含量提高16.3%,从而使净光合速率提高12.2%。此外,SA上调木质素生物合成相关基因、CYP450和GST的表达,从而减少DFZ的摄取并加速其降解。因此,小麦籽粒DFZ含量降低了36.2%,降低了健康风险指数。本研究证实了SA具有降低DFZ植物毒性和积累的潜力。基于这些发现,我们建议在dfz污染地区使用SA来减轻植物毒性和相关的人类饮食暴露风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Salicylic acid mitigates the physiological and biochemistry toxicity of fungicide difenoconazole and reduces its accumulation in wheat (Triticum aestivum L.).

Continuous misuse of difenoconazole (DFZ) results in farmland contamination, posing risks to crops and human health. Salicylic acid (SA) has been shown to enhance plant resistance and reduce pesticide phytotoxicity and accumulation. However, whether SA effectively reduces DFZ phytotoxicity and accumulation and its underlying mechanisms remain poorly understood. To address this, a short-term indoor experiment and a long-term outdoor pot experiment were conducted to evaluate the potential of SA to alleviate DFZ-induced phytotoxicity and its effects on DFZ uptake, translocation, metabolism, and accumulation. The underlying mechanisms were explored through physiological, biochemical, and gene expression analyses. The results showed that DFZ induced oxidative damage and reduced photosynthesis by 15.6% in wheat. SA upregulated the expression of genes encoding antioxidant enzymes (POD, CAT, SOD1, and SOD2) in the roots and leaves of DFZ-exposed plants, leading to a 7.5%-13.4% increase in antioxidant enzyme activities and a subsequent 9.7%-14.5% decrease in reactive oxygen species levels. Additionally, SA increased the total chlorophyll content by 16.3%, which was enhanced by regulating chlorophyll synthesis and degradation-related genes, thereby improving the net photosynthetic rate by 12.2%. Furthermore, SA upregulated the expression of lignin biosynthesis-related, CYP450, and GST genes, which reduced DFZ uptake and accelerated its degradation. Consequently, the wheat grain DFZ content decreased by 36.2%, thus reducing the health risk index. This study confirms the potential of SA to reduce DFZ phytotoxicity and accumulation. Based on these findings, we recommend using SA in DFZ-contaminated areas to mitigate phytotoxicity and the associated human dietary exposure risks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Physiology and Biochemistry
Plant Physiology and Biochemistry 生物-植物科学
CiteScore
11.10
自引率
3.10%
发文量
410
审稿时长
33 days
期刊介绍: Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement. Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB. Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.
期刊最新文献
Bacillus pumilus G5 combined with silicon enhanced flavonoid biosynthesis in drought-stressed Glycyrrhiza uralensis Fisch. by regulating jasmonate, gibberellin and ethylene crosstalk. Genome-wide identification of the bZIP family in Eutrema salsugineum and functional analysis of EsbZIP51 in regulating salt tolerance. 24-Epibrassinolide treatment alleviates frost damage of apple flower via regulating proline, ROS, and energy metabolism. Molecular mechanisms of nitric oxide regulating high photosynthetic performance of wheat plants in waterlogging at flowering. A transplantation study in the high-altitude ecosystem of Ladakh suggests site-specific microenvironment is key for physiological adaptation than altitude.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1