Myeongeun Kim, Ye-Seong Song, Lakjong Jeong, Tae-Yun Lee, Hyo Seok Choi, In Kim, Myungjae Lee, Heonsu Jeon
{"title":"1,550-nm photonic crystal surface-emitting laser diode fabricated by single deep air-hole etch","authors":"Myeongeun Kim, Ye-Seong Song, Lakjong Jeong, Tae-Yun Lee, Hyo Seok Choi, In Kim, Myungjae Lee, Heonsu Jeon","doi":"10.1515/nanoph-2024-0760","DOIUrl":null,"url":null,"abstract":"Photonic crystal surface-emitting lasers (PCSELs) are promising light sources with numerous advantages, including vertical emission, single-mode operation, and high output power. However, the fabrication of PCSEL devices requires advanced techniques, such as wafer bonding or epitaxial regrowth, to form a photonic crystal (PhC) structure close to the central waveguide layer. This process is not only complicated but also necessitates multiple semiconductor epitaxies, which reduces fabrication yield and increases manufacturing costs. In this study, we introduce a simpler method for fabricating PCSELs that requires only a single dry-etch run on any standard edge-emitting laser diode epistructure. The key challenge of creating an array of PhC air holes deep enough to reach the waveguide layer is addressed through high-temperature, high-plasma-density dry etching. PCSEL devices fabricated using this method lased in single mode at a threshold current density as low as ∼0.8 kA/cm<jats:sup>2</jats:sup>, which is comparable to or better than previously demonstrated devices. Our results offer a cost-effective, high-yield approach to PCSEL fabrication.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"13 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0760","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
1,550-nm photonic crystal surface-emitting laser diode fabricated by single deep air-hole etch
Photonic crystal surface-emitting lasers (PCSELs) are promising light sources with numerous advantages, including vertical emission, single-mode operation, and high output power. However, the fabrication of PCSEL devices requires advanced techniques, such as wafer bonding or epitaxial regrowth, to form a photonic crystal (PhC) structure close to the central waveguide layer. This process is not only complicated but also necessitates multiple semiconductor epitaxies, which reduces fabrication yield and increases manufacturing costs. In this study, we introduce a simpler method for fabricating PCSELs that requires only a single dry-etch run on any standard edge-emitting laser diode epistructure. The key challenge of creating an array of PhC air holes deep enough to reach the waveguide layer is addressed through high-temperature, high-plasma-density dry etching. PCSEL devices fabricated using this method lased in single mode at a threshold current density as low as ∼0.8 kA/cm2, which is comparable to or better than previously demonstrated devices. Our results offer a cost-effective, high-yield approach to PCSEL fabrication.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.