Hyoung-Taek Lee, Hoyeol Lee, Jeonghoon Kim, Miju Park, Changhee Sohn, Hyeong-Ryeol Park
{"title":"Enhanced terahertz magneto-plasmonic effect enabled by epsilon-near-zero iron slot antennas","authors":"Hyoung-Taek Lee, Hoyeol Lee, Jeonghoon Kim, Miju Park, Changhee Sohn, Hyeong-Ryeol Park","doi":"10.1515/nanoph-2024-0665","DOIUrl":null,"url":null,"abstract":"Terahertz magneto-plasmonics plays a crucial role in platforms for isolation and sensing applications, operating at terahertz frequencies. In spite of recent efforts to enhance magneto-optic effects using metasurfaces, the mechanism for optimizing these effects remains unclear in the terahertz regime. Here we investigate terahertz magneto-optic effects using 100 nm-thick iron slot antennas with varying widths, ranging from 20 µm to 300 nm. Interestingly, as the width of slot antenna decreases, this enhancement peaks around 1 µm, after which the effect diminishes for smaller widths. Based on the effective medium theory, the slot antennas exhibit a maximum Faraday rotation angle near the epsilon-near-zero region. Although the field enhancements in the slot become stronger with the sub-micron widths, the magneto-optic effect may decrease with increasing effective dielectric constant due to gap plasmon effects in the sub-micron region. Our findings provide essential criteria for designing ferromagnetic metasurfaces with enhanced Faraday rotations at terahertz frequencies.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"35 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0665","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhanced terahertz magneto-plasmonic effect enabled by epsilon-near-zero iron slot antennas
Terahertz magneto-plasmonics plays a crucial role in platforms for isolation and sensing applications, operating at terahertz frequencies. In spite of recent efforts to enhance magneto-optic effects using metasurfaces, the mechanism for optimizing these effects remains unclear in the terahertz regime. Here we investigate terahertz magneto-optic effects using 100 nm-thick iron slot antennas with varying widths, ranging from 20 µm to 300 nm. Interestingly, as the width of slot antenna decreases, this enhancement peaks around 1 µm, after which the effect diminishes for smaller widths. Based on the effective medium theory, the slot antennas exhibit a maximum Faraday rotation angle near the epsilon-near-zero region. Although the field enhancements in the slot become stronger with the sub-micron widths, the magneto-optic effect may decrease with increasing effective dielectric constant due to gap plasmon effects in the sub-micron region. Our findings provide essential criteria for designing ferromagnetic metasurfaces with enhanced Faraday rotations at terahertz frequencies.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.