Li Cao , Renyi Lu , Zheng Dou , Min Zheng , Xiao Han , Yu Hao , Li Zhang , Jinfang Zhang , Bin Liu , Xiaofeng Li
{"title":"Understanding the influence of high-strength submicron precipitate on the fracture performance of additively-manufactured aluminum alloy","authors":"Li Cao , Renyi Lu , Zheng Dou , Min Zheng , Xiao Han , Yu Hao , Li Zhang , Jinfang Zhang , Bin Liu , Xiaofeng Li","doi":"10.1016/j.ijplas.2025.104306","DOIUrl":null,"url":null,"abstract":"<div><div>The formation of intermetallic compound has been widely considered as an effective strengthening approach in Al alloy. Its precipitate dimension is a key factor influencing the mechanical performance. Except for the pinning effect of nanosized precipitate, the contribution of submicron precipitate is also nonnegligible. Therefore, establishing the mechanism framework for the relationship of manufacturing process-precipitate structure-fracture performance is of great significance, which is essential and foundational for optimizing the practical service performance of alloys parts. Herein, by taking the Al-Cu-Ni series alloy (e.g. RR350) as background, the study reveals the microstructure evolution of high-strength submicron Al<sub>7</sub>Cu<sub>4</sub>Ni precipitate from fabrication (additive manufacturing-heat treatment) to failure, and its influence mechanism on the fracture behavior. Through the microstructure regulation, a high elongation rate of ∼28.5 % and slightly-deteriorated ultimate tensile strength of ∼305.2 MPa are achieved. The <em>in-situ</em> and <em>ex-situ</em> characterizations are employed to analyze the synergy mechanism of strength-ductility performance. Some novel findings are obtained that the submicron grain-boundary precipitates can interrupt the intergranular crack by influencing the stress status, thus decreasing the crack propagation rate and altering its propagation pathways. The entangled dislocation also presents an obstruction impact on the intragranular crack extension by its hardening effect. Moreover, the submicron Al<sub>7</sub>Cu<sub>4</sub>Ni precipitates with high bonding strength can withstand the concentrated stress to maintain a stable structure during alloy fracture, meanwhile present a strengthening effect on α-Al matrix to ameliorate the deterioration of tensile strength. The characterization of dislocation and microcrack evolution, provides direct evidence to the mechanism framework above, and could also provide insights into the strength-ductility coordination for other Al alloys.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"188 ","pages":"Article 104306"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641925000658","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Understanding the influence of high-strength submicron precipitate on the fracture performance of additively-manufactured aluminum alloy
The formation of intermetallic compound has been widely considered as an effective strengthening approach in Al alloy. Its precipitate dimension is a key factor influencing the mechanical performance. Except for the pinning effect of nanosized precipitate, the contribution of submicron precipitate is also nonnegligible. Therefore, establishing the mechanism framework for the relationship of manufacturing process-precipitate structure-fracture performance is of great significance, which is essential and foundational for optimizing the practical service performance of alloys parts. Herein, by taking the Al-Cu-Ni series alloy (e.g. RR350) as background, the study reveals the microstructure evolution of high-strength submicron Al7Cu4Ni precipitate from fabrication (additive manufacturing-heat treatment) to failure, and its influence mechanism on the fracture behavior. Through the microstructure regulation, a high elongation rate of ∼28.5 % and slightly-deteriorated ultimate tensile strength of ∼305.2 MPa are achieved. The in-situ and ex-situ characterizations are employed to analyze the synergy mechanism of strength-ductility performance. Some novel findings are obtained that the submicron grain-boundary precipitates can interrupt the intergranular crack by influencing the stress status, thus decreasing the crack propagation rate and altering its propagation pathways. The entangled dislocation also presents an obstruction impact on the intragranular crack extension by its hardening effect. Moreover, the submicron Al7Cu4Ni precipitates with high bonding strength can withstand the concentrated stress to maintain a stable structure during alloy fracture, meanwhile present a strengthening effect on α-Al matrix to ameliorate the deterioration of tensile strength. The characterization of dislocation and microcrack evolution, provides direct evidence to the mechanism framework above, and could also provide insights into the strength-ductility coordination for other Al alloys.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.