车联网中的 CSI 获取:利用模型剪枝和矢量量化进行边缘联合学习

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Intelligent Systems Pub Date : 2025-03-18 DOI:10.1155/int/5813659
Yi Wang, Junlei Zhi, Linsheng Mei, Wei Huang
{"title":"车联网中的 CSI 获取:利用模型剪枝和矢量量化进行边缘联合学习","authors":"Yi Wang,&nbsp;Junlei Zhi,&nbsp;Linsheng Mei,&nbsp;Wei Huang","doi":"10.1155/int/5813659","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The conventional machine learning (ML)–based channel state information (CSI) acquisition has overlooked the potential privacy disclosure and estimation overhead problem caused by transmitting pilot datasets during the estimation stage. In this paper, we propose federated edge learning for CSI acquisition to protect the data privacy in the Internet of vehicle network with massive antenna array. To reduce the channel estimation overhead, the joint model pruning and vector quantization algorithm for network gradient parameters is presented to reduce the amount of exchange information between the centralized server and devices. This scheme allows for local fine-tuning to adapt the global model to the channel characteristics of each device. In addition, we also provide theoretical guarantees of convergence and quantization error bound in closed form, respectively. Simulation results demonstrate that the proposed FL-based CSI acquisition with model pruning and vector quantization scheme can efficiently improve the performance of channel estimation while reducing the communication overhead.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/5813659","citationCount":"0","resultStr":"{\"title\":\"CSI Acquisition in Internet of Vehicle Network: Federated Edge Learning With Model Pruning and Vector Quantization\",\"authors\":\"Yi Wang,&nbsp;Junlei Zhi,&nbsp;Linsheng Mei,&nbsp;Wei Huang\",\"doi\":\"10.1155/int/5813659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>The conventional machine learning (ML)–based channel state information (CSI) acquisition has overlooked the potential privacy disclosure and estimation overhead problem caused by transmitting pilot datasets during the estimation stage. In this paper, we propose federated edge learning for CSI acquisition to protect the data privacy in the Internet of vehicle network with massive antenna array. To reduce the channel estimation overhead, the joint model pruning and vector quantization algorithm for network gradient parameters is presented to reduce the amount of exchange information between the centralized server and devices. This scheme allows for local fine-tuning to adapt the global model to the channel characteristics of each device. In addition, we also provide theoretical guarantees of convergence and quantization error bound in closed form, respectively. Simulation results demonstrate that the proposed FL-based CSI acquisition with model pruning and vector quantization scheme can efficiently improve the performance of channel estimation while reducing the communication overhead.</p>\\n </div>\",\"PeriodicalId\":14089,\"journal\":{\"name\":\"International Journal of Intelligent Systems\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/5813659\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/int/5813659\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/5813659","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CSI Acquisition in Internet of Vehicle Network: Federated Edge Learning With Model Pruning and Vector Quantization

The conventional machine learning (ML)–based channel state information (CSI) acquisition has overlooked the potential privacy disclosure and estimation overhead problem caused by transmitting pilot datasets during the estimation stage. In this paper, we propose federated edge learning for CSI acquisition to protect the data privacy in the Internet of vehicle network with massive antenna array. To reduce the channel estimation overhead, the joint model pruning and vector quantization algorithm for network gradient parameters is presented to reduce the amount of exchange information between the centralized server and devices. This scheme allows for local fine-tuning to adapt the global model to the channel characteristics of each device. In addition, we also provide theoretical guarantees of convergence and quantization error bound in closed form, respectively. Simulation results demonstrate that the proposed FL-based CSI acquisition with model pruning and vector quantization scheme can efficiently improve the performance of channel estimation while reducing the communication overhead.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
期刊最新文献
Locality Sensitive Hashing-Based Deepfake Image Recognition for Athletic Celebrities A Question-Aware Few-Shot Text-to-SQL Neural Model for Industrial Databases A Lightweight Dynamic Hierarchical Neural Network Model and Learning Paradigm CSI Acquisition in Internet of Vehicle Network: Federated Edge Learning With Model Pruning and Vector Quantization A Novel Correlation Coefficient for Spherical Fuzzy Sets and Its Application in Pattern Recognition, Medical Diagnosis, and Mega Project Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1