一种简单的人工智能方法,用于定量牙齿材料上的细菌粘附。

Biomaterial investigations in dentistry Pub Date : 2022-08-31 eCollection Date: 2022-01-01 DOI:10.1080/26415275.2022.2114479
Hao Ding, Yunzhen Yang, Xin Li, Gary Shun-Pan Cheung, Jukka Pekka Matinlinna, Michael Burrow, James Kit-Hon Tsoi
{"title":"一种简单的人工智能方法,用于定量牙齿材料上的细菌粘附。","authors":"Hao Ding,&nbsp;Yunzhen Yang,&nbsp;Xin Li,&nbsp;Gary Shun-Pan Cheung,&nbsp;Jukka Pekka Matinlinna,&nbsp;Michael Burrow,&nbsp;James Kit-Hon Tsoi","doi":"10.1080/26415275.2022.2114479","DOIUrl":null,"url":null,"abstract":"<p><p><b>Purpose:</b> Measurement of bacterial adhesion has been of great interest for different dental materials. Various methods have been used for bacterial counting; however, they are all indirect measurements with estimated results and therefore cannot truly reflect the adhesion status. This study provides a new direct measurement approach by using a simple artificial intelligence (AI) method to quantify the initial bacterial adhesion on different dental materials using Scanning Electron Microscope (SEM) images. <b>Materials and Methods:</b> <i>Porphyromonas gingivalis</i> (<i>P.g.</i>) and <i>Fusobacterium nucleatum</i> (<i>F.n.</i>) were used for bacterial adhesion on dental zirconia surfaces, and the adhesion was evaluated using SEM images at time points of one, seven, and 24 h(s). Image pre-processing and bacterial area measurement were performed using Fiji software with a machine learning plugin. The same AI method was also applied on SEM with <i>Streptococcus mutans</i> (<i>S.m.</i>) inoculated PMMA nano-structured surface at 1, 24, 72, and 168 h(s), and then further compared with the CLSM method. <b>Results:</b> For both <i>P.g.</i> and <i>F.n.</i> initiation adhesion on zirconia, a new linear correlation (r<sup>2</sup> > 0.98) was found between bacteria adhered area and time, such that: <math><msqrt><mi>b</mi> <mi>acteria</mi> <mi> </mi> <mi>adhered</mi> <mi> </mi> <mi>area</mi> <mi> </mi> <mo>(</mo> <mrow> <msup><mrow><mi>m</mi> <mi>m</mi></mrow> <mrow><mn>2</mn></mrow> </msup> </mrow> <mo>)</mo></msqrt> <mo>∝</mo> <mrow><mrow><mi>log</mi></mrow> <mo>⁡</mo> <mrow><mo>(</mo> <mi>time</mi> <mo>)</mo></mrow> </mrow> </math> For S.m. on PMMA surface, live/dead staining CLSM method and the newly proposed AI method on SEM images were strongly and positively associated (Pearson's correlation coefficient <i>r</i> > 0.9), i.e. both methods are comparable. <b>Conclusions:</b> SEM images can be analyzed directly for both morphology and quantifying bacterial adhesion on different dental materials' surfaces by the simple AI-enabled method with reduced time, cost, and labours.</p>","PeriodicalId":72378,"journal":{"name":"Biomaterial investigations in dentistry","volume":" ","pages":"75-83"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9448434/pdf/","citationCount":"1","resultStr":"{\"title\":\"A simple AI-enabled method for quantifying bacterial adhesion on dental materials.\",\"authors\":\"Hao Ding,&nbsp;Yunzhen Yang,&nbsp;Xin Li,&nbsp;Gary Shun-Pan Cheung,&nbsp;Jukka Pekka Matinlinna,&nbsp;Michael Burrow,&nbsp;James Kit-Hon Tsoi\",\"doi\":\"10.1080/26415275.2022.2114479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Purpose:</b> Measurement of bacterial adhesion has been of great interest for different dental materials. Various methods have been used for bacterial counting; however, they are all indirect measurements with estimated results and therefore cannot truly reflect the adhesion status. This study provides a new direct measurement approach by using a simple artificial intelligence (AI) method to quantify the initial bacterial adhesion on different dental materials using Scanning Electron Microscope (SEM) images. <b>Materials and Methods:</b> <i>Porphyromonas gingivalis</i> (<i>P.g.</i>) and <i>Fusobacterium nucleatum</i> (<i>F.n.</i>) were used for bacterial adhesion on dental zirconia surfaces, and the adhesion was evaluated using SEM images at time points of one, seven, and 24 h(s). Image pre-processing and bacterial area measurement were performed using Fiji software with a machine learning plugin. The same AI method was also applied on SEM with <i>Streptococcus mutans</i> (<i>S.m.</i>) inoculated PMMA nano-structured surface at 1, 24, 72, and 168 h(s), and then further compared with the CLSM method. <b>Results:</b> For both <i>P.g.</i> and <i>F.n.</i> initiation adhesion on zirconia, a new linear correlation (r<sup>2</sup> > 0.98) was found between bacteria adhered area and time, such that: <math><msqrt><mi>b</mi> <mi>acteria</mi> <mi> </mi> <mi>adhered</mi> <mi> </mi> <mi>area</mi> <mi> </mi> <mo>(</mo> <mrow> <msup><mrow><mi>m</mi> <mi>m</mi></mrow> <mrow><mn>2</mn></mrow> </msup> </mrow> <mo>)</mo></msqrt> <mo>∝</mo> <mrow><mrow><mi>log</mi></mrow> <mo>⁡</mo> <mrow><mo>(</mo> <mi>time</mi> <mo>)</mo></mrow> </mrow> </math> For S.m. on PMMA surface, live/dead staining CLSM method and the newly proposed AI method on SEM images were strongly and positively associated (Pearson's correlation coefficient <i>r</i> > 0.9), i.e. both methods are comparable. <b>Conclusions:</b> SEM images can be analyzed directly for both morphology and quantifying bacterial adhesion on different dental materials' surfaces by the simple AI-enabled method with reduced time, cost, and labours.</p>\",\"PeriodicalId\":72378,\"journal\":{\"name\":\"Biomaterial investigations in dentistry\",\"volume\":\" \",\"pages\":\"75-83\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9448434/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterial investigations in dentistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/26415275.2022.2114479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterial investigations in dentistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/26415275.2022.2114479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

目的:测定不同牙材料的细菌黏附力一直是人们关注的问题。细菌计数的方法有很多种;但均为间接测量,结果估计,不能真实反映粘附状态。本研究提供了一种新的直接测量方法,通过简单的人工智能(AI)方法,通过扫描电子显微镜(SEM)图像量化不同牙科材料上的初始细菌粘附。材料与方法:采用牙龈卟啉单胞菌(Porphyromonas gingivalis, P.g.)和核梭杆菌(Fusobacterium nucleatum, F.n.)对牙齿氧化锆表面进行细菌粘附,并在1、7和24 h(s)的时间点使用SEM图像评估粘附情况。使用带有机器学习插件的Fiji软件进行图像预处理和细菌面积测量。同样的AI方法在1、24、72和168 h(s)对接种了变形链球菌(Streptococcus mutans, S.m)的PMMA纳米结构表面进行扫描电镜分析,并与CLSM方法进行比较。结果:对于P.g.和F.n.在氧化锆上的起始粘附,细菌粘附面积与时间之间存在新的线性相关关系(r2 > 0.98),即:b细菌粘附面积(m²m²)∝log (time)。对于S.m.在PMMA表面,活/死染色CLSM方法与新提出的AI方法在SEM图像上呈强正相关(Pearson相关系数r > 0.9),即两种方法具有可比性。结论:通过简单的人工智能方法,可以直接分析SEM图像,对不同牙科材料表面的细菌粘附进行形态学和定量分析,减少了时间、成本和人工。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A simple AI-enabled method for quantifying bacterial adhesion on dental materials.

Purpose: Measurement of bacterial adhesion has been of great interest for different dental materials. Various methods have been used for bacterial counting; however, they are all indirect measurements with estimated results and therefore cannot truly reflect the adhesion status. This study provides a new direct measurement approach by using a simple artificial intelligence (AI) method to quantify the initial bacterial adhesion on different dental materials using Scanning Electron Microscope (SEM) images. Materials and Methods: Porphyromonas gingivalis (P.g.) and Fusobacterium nucleatum (F.n.) were used for bacterial adhesion on dental zirconia surfaces, and the adhesion was evaluated using SEM images at time points of one, seven, and 24 h(s). Image pre-processing and bacterial area measurement were performed using Fiji software with a machine learning plugin. The same AI method was also applied on SEM with Streptococcus mutans (S.m.) inoculated PMMA nano-structured surface at 1, 24, 72, and 168 h(s), and then further compared with the CLSM method. Results: For both P.g. and F.n. initiation adhesion on zirconia, a new linear correlation (r2 > 0.98) was found between bacteria adhered area and time, such that: b acteria   adhered   area   ( m m 2 ) log ( time ) For S.m. on PMMA surface, live/dead staining CLSM method and the newly proposed AI method on SEM images were strongly and positively associated (Pearson's correlation coefficient r > 0.9), i.e. both methods are comparable. Conclusions: SEM images can be analyzed directly for both morphology and quantifying bacterial adhesion on different dental materials' surfaces by the simple AI-enabled method with reduced time, cost, and labours.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
14 weeks
期刊最新文献
Root-filling materials for endodontic surgery: biological and clinical aspects. Silane and acid etch cross contamination of dentin and composite reduced µ-tensile bond strength. Recipient of Biomaterial Investigations in Dentistry's Young Author Award 2023. Reliability and agreement of root length measurements during orthodontic treatment in images from different CBCT machines using multiplanar reconstruction. The sealing ability of different endodontic biomaterials as an intra-orifice barrier: evaluation with high-performance liquid chromatography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1