弱视的动物模型。

IF 1.1 4区 医学 Q4 NEUROSCIENCES Visual Neuroscience Pub Date : 2018-01-01 DOI:10.1017/S0952523817000244
Donald Mitchell, Frank Sengpiel
{"title":"弱视的动物模型。","authors":"Donald Mitchell,&nbsp;Frank Sengpiel","doi":"10.1017/S0952523817000244","DOIUrl":null,"url":null,"abstract":"<p><p>Unquestionably, the last six decades of research on various animal models have advanced our understanding of the mechanisms that underlie the many complex characteristics of amblyopia as well as provided promising new avenues for treatment. While animal models in general have served an important purpose, there nonetheless remain questions regarding the efficacy of particular models considering the differences across animal species, especially when the goal is to provide the foundations for human interventions. Our discussion of these issues culminated in three recommendations for future research to provide cohesion across animals models as well as a fourth recommendation for acceptance of a protocol for the minimum number of steps necessary for the translation of results obtained on particular animal models to human clinical trials. The three recommendations for future research arose from discussions of various issues including the specific results obtained from the use of different animal models, the degree of similarity to the human visual system, the ability to generate animal models of the different types of human amblyopia as well as the difficulty of scaling developmental timelines between different species.</p>","PeriodicalId":23556,"journal":{"name":"Visual Neuroscience","volume":"35 ","pages":"E017"},"PeriodicalIF":1.1000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0952523817000244","citationCount":"10","resultStr":"{\"title\":\"Animal models of amblyopia.\",\"authors\":\"Donald Mitchell,&nbsp;Frank Sengpiel\",\"doi\":\"10.1017/S0952523817000244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Unquestionably, the last six decades of research on various animal models have advanced our understanding of the mechanisms that underlie the many complex characteristics of amblyopia as well as provided promising new avenues for treatment. While animal models in general have served an important purpose, there nonetheless remain questions regarding the efficacy of particular models considering the differences across animal species, especially when the goal is to provide the foundations for human interventions. Our discussion of these issues culminated in three recommendations for future research to provide cohesion across animals models as well as a fourth recommendation for acceptance of a protocol for the minimum number of steps necessary for the translation of results obtained on particular animal models to human clinical trials. The three recommendations for future research arose from discussions of various issues including the specific results obtained from the use of different animal models, the degree of similarity to the human visual system, the ability to generate animal models of the different types of human amblyopia as well as the difficulty of scaling developmental timelines between different species.</p>\",\"PeriodicalId\":23556,\"journal\":{\"name\":\"Visual Neuroscience\",\"volume\":\"35 \",\"pages\":\"E017\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/S0952523817000244\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1017/S0952523817000244\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S0952523817000244","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 10

摘要

毫无疑问,过去60年对各种动物模型的研究提高了我们对弱视许多复杂特征背后机制的理解,并为治疗提供了有希望的新途径。虽然动物模型总体上起到了重要的作用,但考虑到动物物种之间的差异,特别是当目标是为人类干预提供基础时,关于特定模型的有效性仍然存在问题。我们对这些问题的讨论最终形成了对未来研究的三项建议,以提供跨动物模型的凝聚力,以及第四项建议,即接受将特定动物模型上获得的结果转化为人类临床试验所需的最少步骤的协议。对未来研究的三个建议来自于对各种问题的讨论,包括使用不同动物模型获得的具体结果,与人类视觉系统的相似程度,生成不同类型人类弱视动物模型的能力以及确定不同物种之间发育时间表的难度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Animal models of amblyopia.

Unquestionably, the last six decades of research on various animal models have advanced our understanding of the mechanisms that underlie the many complex characteristics of amblyopia as well as provided promising new avenues for treatment. While animal models in general have served an important purpose, there nonetheless remain questions regarding the efficacy of particular models considering the differences across animal species, especially when the goal is to provide the foundations for human interventions. Our discussion of these issues culminated in three recommendations for future research to provide cohesion across animals models as well as a fourth recommendation for acceptance of a protocol for the minimum number of steps necessary for the translation of results obtained on particular animal models to human clinical trials. The three recommendations for future research arose from discussions of various issues including the specific results obtained from the use of different animal models, the degree of similarity to the human visual system, the ability to generate animal models of the different types of human amblyopia as well as the difficulty of scaling developmental timelines between different species.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
Visual Neuroscience
Visual Neuroscience 医学-神经科学
CiteScore
2.20
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Visual Neuroscience is an international journal devoted to the publication of experimental and theoretical research on biological mechanisms of vision. A major goal of publication is to bring together in one journal a broad range of studies that reflect the diversity and originality of all aspects of neuroscience research relating to the visual system. Contributions may address molecular, cellular or systems-level processes in either vertebrate or invertebrate species. The journal publishes work based on a wide range of technical approaches, including molecular genetics, anatomy, physiology, psychophysics and imaging, and utilizing comparative, developmental, theoretical or computational approaches to understand the biology of vision and visuo-motor control. The journal also publishes research seeking to understand disorders of the visual system and strategies for restoring vision. Studies based exclusively on clinical, psychophysiological or behavioral data are welcomed, provided that they address questions concerning neural mechanisms of vision or provide insight into visual dysfunction.
期刊最新文献
Support for the efficient coding account of visual discomfort. Visual Field Asymmetries in Responses to ON and OFF Pathway Biasing Stimuli. Pattern reversal chromatic VEPs like onsets, are unaffected by attentional demand. The interaction between luminance polarity grouping and symmetry axes on the ERP responses to symmetry. Electroretinographic responses to periodic stimuli in primates and the relevance for visual perception and for clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1