{"title":"弱视的动物模型。","authors":"Donald Mitchell, Frank Sengpiel","doi":"10.1017/S0952523817000244","DOIUrl":null,"url":null,"abstract":"<p><p>Unquestionably, the last six decades of research on various animal models have advanced our understanding of the mechanisms that underlie the many complex characteristics of amblyopia as well as provided promising new avenues for treatment. While animal models in general have served an important purpose, there nonetheless remain questions regarding the efficacy of particular models considering the differences across animal species, especially when the goal is to provide the foundations for human interventions. Our discussion of these issues culminated in three recommendations for future research to provide cohesion across animals models as well as a fourth recommendation for acceptance of a protocol for the minimum number of steps necessary for the translation of results obtained on particular animal models to human clinical trials. The three recommendations for future research arose from discussions of various issues including the specific results obtained from the use of different animal models, the degree of similarity to the human visual system, the ability to generate animal models of the different types of human amblyopia as well as the difficulty of scaling developmental timelines between different species.</p>","PeriodicalId":23556,"journal":{"name":"Visual Neuroscience","volume":"35 ","pages":"E017"},"PeriodicalIF":1.1000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0952523817000244","citationCount":"10","resultStr":"{\"title\":\"Animal models of amblyopia.\",\"authors\":\"Donald Mitchell, Frank Sengpiel\",\"doi\":\"10.1017/S0952523817000244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Unquestionably, the last six decades of research on various animal models have advanced our understanding of the mechanisms that underlie the many complex characteristics of amblyopia as well as provided promising new avenues for treatment. While animal models in general have served an important purpose, there nonetheless remain questions regarding the efficacy of particular models considering the differences across animal species, especially when the goal is to provide the foundations for human interventions. Our discussion of these issues culminated in three recommendations for future research to provide cohesion across animals models as well as a fourth recommendation for acceptance of a protocol for the minimum number of steps necessary for the translation of results obtained on particular animal models to human clinical trials. The three recommendations for future research arose from discussions of various issues including the specific results obtained from the use of different animal models, the degree of similarity to the human visual system, the ability to generate animal models of the different types of human amblyopia as well as the difficulty of scaling developmental timelines between different species.</p>\",\"PeriodicalId\":23556,\"journal\":{\"name\":\"Visual Neuroscience\",\"volume\":\"35 \",\"pages\":\"E017\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/S0952523817000244\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1017/S0952523817000244\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S0952523817000244","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Unquestionably, the last six decades of research on various animal models have advanced our understanding of the mechanisms that underlie the many complex characteristics of amblyopia as well as provided promising new avenues for treatment. While animal models in general have served an important purpose, there nonetheless remain questions regarding the efficacy of particular models considering the differences across animal species, especially when the goal is to provide the foundations for human interventions. Our discussion of these issues culminated in three recommendations for future research to provide cohesion across animals models as well as a fourth recommendation for acceptance of a protocol for the minimum number of steps necessary for the translation of results obtained on particular animal models to human clinical trials. The three recommendations for future research arose from discussions of various issues including the specific results obtained from the use of different animal models, the degree of similarity to the human visual system, the ability to generate animal models of the different types of human amblyopia as well as the difficulty of scaling developmental timelines between different species.
期刊介绍:
Visual Neuroscience is an international journal devoted to the publication of experimental and theoretical research on biological mechanisms of vision. A major goal of publication is to bring together in one journal a broad range of studies that reflect the diversity and originality of all aspects of neuroscience research relating to the visual system. Contributions may address molecular, cellular or systems-level processes in either vertebrate or invertebrate species. The journal publishes work based on a wide range of technical approaches, including molecular genetics, anatomy, physiology, psychophysics and imaging, and utilizing comparative, developmental, theoretical or computational approaches to understand the biology of vision and visuo-motor control. The journal also publishes research seeking to understand disorders of the visual system and strategies for restoring vision. Studies based exclusively on clinical, psychophysiological or behavioral data are welcomed, provided that they address questions concerning neural mechanisms of vision or provide insight into visual dysfunction.