血小板内皮聚集受体-1通过整合素-1和局灶黏附激酶调控牛肌肉卫星细胞的迁移和分化。

IF 3.3 3区 生物学 Q3 CELL BIOLOGY Cell Adhesion & Migration Pub Date : 2019-12-01 DOI:10.1080/19336918.2019.1619434
Yusheng Pang, Ziheng Zhang, Zhao Wang, Yuxin Wang, Yunqin Yan, Shufeng Li, Huili Tong
{"title":"血小板内皮聚集受体-1通过整合素-1和局灶黏附激酶调控牛肌肉卫星细胞的迁移和分化。","authors":"Yusheng Pang,&nbsp;Ziheng Zhang,&nbsp;Zhao Wang,&nbsp;Yuxin Wang,&nbsp;Yunqin Yan,&nbsp;Shufeng Li,&nbsp;Huili Tong","doi":"10.1080/19336918.2019.1619434","DOIUrl":null,"url":null,"abstract":"<p><p>PEAR1 is highly expressed at bovine MDSC differentiation. However, its biological function remains unclear. Western blotting results showed that PEAR1 increased between day 0 and day 2 of cell differentiation and decreased from day 3. Moreover, scratch test showed that wound healing rate increased after PEAR1 overexpression and decreased upon its suppression. Meanwhile, we found that, upon PEAR1 induction, both the expression of the focal adhesion-associated and MyoG, and the myotube fusion rate increased. However, when PEAR1 was suppressed, opposite results were obtained. Immunoprecipitation revealed an association between PEAR1 and ITGB1. Notably, inhibition of FAK and ITGB1 repressed cell differentiation. In conclusion, our study indicated that PEAR1 is involved in the regulation of bovine MDSC migration and differentiation.</p>","PeriodicalId":9680,"journal":{"name":"Cell Adhesion & Migration","volume":"13 1","pages":"192-202"},"PeriodicalIF":3.3000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336918.2019.1619434","citationCount":"8","resultStr":"{\"title\":\"Platelet endothelial aggregation receptor-1 regulates bovine muscle satellite cell migration and differentiation via integrin beta-1 and focal adhesion kinase.\",\"authors\":\"Yusheng Pang,&nbsp;Ziheng Zhang,&nbsp;Zhao Wang,&nbsp;Yuxin Wang,&nbsp;Yunqin Yan,&nbsp;Shufeng Li,&nbsp;Huili Tong\",\"doi\":\"10.1080/19336918.2019.1619434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>PEAR1 is highly expressed at bovine MDSC differentiation. However, its biological function remains unclear. Western blotting results showed that PEAR1 increased between day 0 and day 2 of cell differentiation and decreased from day 3. Moreover, scratch test showed that wound healing rate increased after PEAR1 overexpression and decreased upon its suppression. Meanwhile, we found that, upon PEAR1 induction, both the expression of the focal adhesion-associated and MyoG, and the myotube fusion rate increased. However, when PEAR1 was suppressed, opposite results were obtained. Immunoprecipitation revealed an association between PEAR1 and ITGB1. Notably, inhibition of FAK and ITGB1 repressed cell differentiation. In conclusion, our study indicated that PEAR1 is involved in the regulation of bovine MDSC migration and differentiation.</p>\",\"PeriodicalId\":9680,\"journal\":{\"name\":\"Cell Adhesion & Migration\",\"volume\":\"13 1\",\"pages\":\"192-202\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/19336918.2019.1619434\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Adhesion & Migration\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/19336918.2019.1619434\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Adhesion & Migration","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19336918.2019.1619434","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 8

摘要

PEAR1在牛MDSC分化过程中高度表达。然而,其生物学功能尚不清楚。Western blotting结果显示,细胞分化第0天至第2天,PEAR1升高,第3天开始下降。此外,划痕实验显示,PEAR1过表达后创面愈合率升高,抑制后创面愈合率降低。同时,我们发现,PEAR1诱导后,局灶粘连相关蛋白和MyoG的表达增加,肌管融合率增加。然而,当PEAR1被抑制时,得到了相反的结果。免疫沉淀显示PEAR1与ITGB1之间存在关联。值得注意的是,FAK和ITGB1的抑制抑制了细胞分化。总之,我们的研究表明,PEAR1参与了牛MDSC迁移和分化的调控。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Platelet endothelial aggregation receptor-1 regulates bovine muscle satellite cell migration and differentiation via integrin beta-1 and focal adhesion kinase.

PEAR1 is highly expressed at bovine MDSC differentiation. However, its biological function remains unclear. Western blotting results showed that PEAR1 increased between day 0 and day 2 of cell differentiation and decreased from day 3. Moreover, scratch test showed that wound healing rate increased after PEAR1 overexpression and decreased upon its suppression. Meanwhile, we found that, upon PEAR1 induction, both the expression of the focal adhesion-associated and MyoG, and the myotube fusion rate increased. However, when PEAR1 was suppressed, opposite results were obtained. Immunoprecipitation revealed an association between PEAR1 and ITGB1. Notably, inhibition of FAK and ITGB1 repressed cell differentiation. In conclusion, our study indicated that PEAR1 is involved in the regulation of bovine MDSC migration and differentiation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
0.00%
发文量
7
审稿时长
53 weeks
期刊介绍: Cell Adhesion & Migration is a multi-disciplinary, peer reviewed open access journal that focuses on the biological or pathological implications of cell-cell and cell-microenvironment interactions. The main focus of this journal is fundamental science. The journal strives to serve a broad readership by regularly publishing review articles covering specific disciplines within the field, and by publishing focused issues that provide an overview on specific topics of interest within the field. Cell Adhesion & Migration publishes relevant and timely original research, as well as authoritative overviews, commentaries, and perspectives, providing context for the work presented in Cell Adhesion & Migration and for key results published elsewhere. Original research papers may cover all topics important in the field of cell-cell and cell-matrix interactions. Cell Adhesion & Migration also publishes articles related to cell biomechanics, biomaterial, and development of related imaging technologies.
期刊最新文献
Orosomucoid 1 interacts with S100A12 and activates ERK signalling to expedite the advancement of bladder cancer. Knockdown of HGH1 in breast cancer cell lines can inhibit the viability, invasion and migration of tumor cells. JNK3 inhibitors as promising pharmaceuticals with neuroprotective properties. Copine C plays a role in adhesion and streaming in Dictyostelium. Elucidating the role of MICAL1 in pan-cancer using integrated bioinformatics and experimental approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1