Jeroen P.M. Vrancken , Jana Aupič , Christine Addy , Roman Jerala , Jeremy R.H. Tame , Arnout R.D. Voet
{"title":"用人造蛋白披萨构建的分子组装","authors":"Jeroen P.M. Vrancken , Jana Aupič , Christine Addy , Roman Jerala , Jeremy R.H. Tame , Arnout R.D. Voet","doi":"10.1016/j.yjsbx.2020.100027","DOIUrl":null,"url":null,"abstract":"<div><p>Recently an artificial protein named Pizza6 was reported, which possesses six identical tandem repeats and adopts a monomeric <span><math><mrow><mi>β</mi></mrow></math></span>-propeller fold with sixfold structural symmetry. Pizza2, a truncated form that consists of a double tandem repeat, self-assembles into a trimer reconstructing the same propeller architecture as Pizza6. The ability of pizza proteins to self-assemble to form complete propellers makes them interesting building blocks to engineer larger symmetrical protein complexes such as symmetric nanoparticles. Here we have explored the self-assembly of Pizza2 fused to homo-oligomerizing peptides. In total, we engineered five different fusion proteins, of which three appeared to assemble successfully into larger complexes. Further characterization of these proteins showed one monodisperse designer protein with a structure close to the intended design. This protein was further fused to eGFP to investigate functionalization of the nanoparticle. The fusion protein was stable and could be expressed in high yield, showing that Pizza-based nanoparticles may be further decorated with functional domains</p></div>","PeriodicalId":17238,"journal":{"name":"Journal of Structural Biology: X","volume":"4 ","pages":"Article 100027"},"PeriodicalIF":3.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.yjsbx.2020.100027","citationCount":"7","resultStr":"{\"title\":\"Molecular assemblies built with the artificial protein Pizza\",\"authors\":\"Jeroen P.M. Vrancken , Jana Aupič , Christine Addy , Roman Jerala , Jeremy R.H. Tame , Arnout R.D. Voet\",\"doi\":\"10.1016/j.yjsbx.2020.100027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently an artificial protein named Pizza6 was reported, which possesses six identical tandem repeats and adopts a monomeric <span><math><mrow><mi>β</mi></mrow></math></span>-propeller fold with sixfold structural symmetry. Pizza2, a truncated form that consists of a double tandem repeat, self-assembles into a trimer reconstructing the same propeller architecture as Pizza6. The ability of pizza proteins to self-assemble to form complete propellers makes them interesting building blocks to engineer larger symmetrical protein complexes such as symmetric nanoparticles. Here we have explored the self-assembly of Pizza2 fused to homo-oligomerizing peptides. In total, we engineered five different fusion proteins, of which three appeared to assemble successfully into larger complexes. Further characterization of these proteins showed one monodisperse designer protein with a structure close to the intended design. This protein was further fused to eGFP to investigate functionalization of the nanoparticle. The fusion protein was stable and could be expressed in high yield, showing that Pizza-based nanoparticles may be further decorated with functional domains</p></div>\",\"PeriodicalId\":17238,\"journal\":{\"name\":\"Journal of Structural Biology: X\",\"volume\":\"4 \",\"pages\":\"Article 100027\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.yjsbx.2020.100027\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Structural Biology: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S259015242030009X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Biology: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259015242030009X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Molecular assemblies built with the artificial protein Pizza
Recently an artificial protein named Pizza6 was reported, which possesses six identical tandem repeats and adopts a monomeric -propeller fold with sixfold structural symmetry. Pizza2, a truncated form that consists of a double tandem repeat, self-assembles into a trimer reconstructing the same propeller architecture as Pizza6. The ability of pizza proteins to self-assemble to form complete propellers makes them interesting building blocks to engineer larger symmetrical protein complexes such as symmetric nanoparticles. Here we have explored the self-assembly of Pizza2 fused to homo-oligomerizing peptides. In total, we engineered five different fusion proteins, of which three appeared to assemble successfully into larger complexes. Further characterization of these proteins showed one monodisperse designer protein with a structure close to the intended design. This protein was further fused to eGFP to investigate functionalization of the nanoparticle. The fusion protein was stable and could be expressed in high yield, showing that Pizza-based nanoparticles may be further decorated with functional domains