生物分子脉冲产生电路设计幅-时标共变约束的实验证据

IF 1.9 4区 生物学 Q4 CELL BIOLOGY IET Systems Biology Pub Date : 2020-10-01 DOI:10.1049/iet-syb.2019.0123
Abhilash Patel, Shaunak Sen
{"title":"生物分子脉冲产生电路设计幅-时标共变约束的实验证据","authors":"Abhilash Patel,&nbsp;Shaunak Sen","doi":"10.1049/iet-syb.2019.0123","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Understanding constraints on the functional properties of biomolecular circuit dynamics, such as the possible variations of amplitude and timescale of a pulse, is an important part of biomolecular circuit design. While the amplitude-timescale co-variations of the pulse in an incoherent feedforward loop have been investigated computationally using mathematical models, experimental support for any such constraints is relatively unclear. Here, the authors address this using experimental measurement of an existing pulse generating incoherent feedforward loop circuit realisation in the context of a standard mathematical model. They characterise the trends of co-variation in the pulse amplitude and rise time computationally by randomly exploring the parameter space. They experimentally measured the co-variation by varying inducers and found that larger amplitude pulses have a slower rise time. They discuss the gap between the experimental measurements and predictions of the standard model, highlighting model additions and other biological factors that might bridge the gap.</p></div>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"14 5","pages":"217-222"},"PeriodicalIF":1.9000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/79/66/SYB2-14-217.PMC9272780.pdf","citationCount":"0","resultStr":"{\"title\":\"Experimental evidence for constraints in amplitude-timescale co-variation of a biomolecular pulse generating circuit design\",\"authors\":\"Abhilash Patel,&nbsp;Shaunak Sen\",\"doi\":\"10.1049/iet-syb.2019.0123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Understanding constraints on the functional properties of biomolecular circuit dynamics, such as the possible variations of amplitude and timescale of a pulse, is an important part of biomolecular circuit design. While the amplitude-timescale co-variations of the pulse in an incoherent feedforward loop have been investigated computationally using mathematical models, experimental support for any such constraints is relatively unclear. Here, the authors address this using experimental measurement of an existing pulse generating incoherent feedforward loop circuit realisation in the context of a standard mathematical model. They characterise the trends of co-variation in the pulse amplitude and rise time computationally by randomly exploring the parameter space. They experimentally measured the co-variation by varying inducers and found that larger amplitude pulses have a slower rise time. They discuss the gap between the experimental measurements and predictions of the standard model, highlighting model additions and other biological factors that might bridge the gap.</p></div>\",\"PeriodicalId\":50379,\"journal\":{\"name\":\"IET Systems Biology\",\"volume\":\"14 5\",\"pages\":\"217-222\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/79/66/SYB2-14-217.PMC9272780.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Systems Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/iet-syb.2019.0123\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/iet-syb.2019.0123","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

了解生物分子电路动力学功能特性的约束,如脉冲振幅和时间尺度的可能变化,是生物分子电路设计的重要组成部分。虽然已经使用数学模型研究了非相干前馈环路中脉冲的振幅-时间尺度共变,但对任何此类约束的实验支持相对不清楚。在这里,作者在标准数学模型的背景下使用现有脉冲产生非相干前馈回路电路实现的实验测量来解决这个问题。他们通过随机探索参数空间,计算出脉冲振幅和上升时间的共变趋势。他们通过实验测量了不同诱导剂的共变,发现振幅较大的脉冲上升时间较慢。他们讨论了实验测量和标准模型预测之间的差距,强调了模型添加和其他可能弥补差距的生物因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental evidence for constraints in amplitude-timescale co-variation of a biomolecular pulse generating circuit design

Understanding constraints on the functional properties of biomolecular circuit dynamics, such as the possible variations of amplitude and timescale of a pulse, is an important part of biomolecular circuit design. While the amplitude-timescale co-variations of the pulse in an incoherent feedforward loop have been investigated computationally using mathematical models, experimental support for any such constraints is relatively unclear. Here, the authors address this using experimental measurement of an existing pulse generating incoherent feedforward loop circuit realisation in the context of a standard mathematical model. They characterise the trends of co-variation in the pulse amplitude and rise time computationally by randomly exploring the parameter space. They experimentally measured the co-variation by varying inducers and found that larger amplitude pulses have a slower rise time. They discuss the gap between the experimental measurements and predictions of the standard model, highlighting model additions and other biological factors that might bridge the gap.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Systems Biology
IET Systems Biology 生物-数学与计算生物学
CiteScore
4.20
自引率
4.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells. The scope includes the following topics: Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.
期刊最新文献
DDANet: A deep dilated attention network for intracerebral haemorrhage segmentation. Human essential gene identification based on feature fusion and feature screening. Inference and analysis of cell-cell communication of non-myeloid circulating cells in late sepsis based on single-cell RNA-seq. siRNAEfficacyDB: An experimentally supported small interfering RNA efficacy database. Deep-GB: A novel deep learning model for globular protein prediction using CNN-BiLSTM architecture and enhanced PSSM with trisection strategy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1