Rohan A Davis, Gunnar Cervin, Karren D Beattie, Topul Rali, Marilyne Fauchon, Claire Hellio, Lovisa Bodin Åkerlund, Henrik Pavia, Johan Svenson
{"title":"天然白藜芦醇多聚体作为海洋防污剂的评价。","authors":"Rohan A Davis, Gunnar Cervin, Karren D Beattie, Topul Rali, Marilyne Fauchon, Claire Hellio, Lovisa Bodin Åkerlund, Henrik Pavia, Johan Svenson","doi":"10.1080/08927014.2023.2263374","DOIUrl":null,"url":null,"abstract":"<p><p>In the current study we investigate the antifouling potential of three polyphenolic resveratrol multimers (-)-hopeaphenol, vaticanol B and vatalbinoside A, isolated from two species of <i>Anisoptera</i> found in the Papua New Guinean rainforest. The compounds were evaluated against the growth and settlement of eight marine microfoulers and against the settlement and metamorphosis of <i>Amphibalanus improvisus</i> barnacle cyprids. The two isomeric compounds (-)-hopeaphenol and vaticanol B displayed a high inhibitory potential against the cyprid larvae metamorphosis at 2.8 and 1.1 μM. (-)-Hopeaphenol was also shown to be a strong inhibitor of both microalgal and bacterial adhesion at submicromolar concentrations with low toxicity. Resveratrol displayed a lower antifouling activity compared to the multimers and had higher off target toxicity against MCR-5 fibroblasts. This study illustrates the potential of natural products as a valuable source for the discovery of novel antifouling leads with low toxicity.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of natural resveratrol multimers as marine antifoulants.\",\"authors\":\"Rohan A Davis, Gunnar Cervin, Karren D Beattie, Topul Rali, Marilyne Fauchon, Claire Hellio, Lovisa Bodin Åkerlund, Henrik Pavia, Johan Svenson\",\"doi\":\"10.1080/08927014.2023.2263374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the current study we investigate the antifouling potential of three polyphenolic resveratrol multimers (-)-hopeaphenol, vaticanol B and vatalbinoside A, isolated from two species of <i>Anisoptera</i> found in the Papua New Guinean rainforest. The compounds were evaluated against the growth and settlement of eight marine microfoulers and against the settlement and metamorphosis of <i>Amphibalanus improvisus</i> barnacle cyprids. The two isomeric compounds (-)-hopeaphenol and vaticanol B displayed a high inhibitory potential against the cyprid larvae metamorphosis at 2.8 and 1.1 μM. (-)-Hopeaphenol was also shown to be a strong inhibitor of both microalgal and bacterial adhesion at submicromolar concentrations with low toxicity. Resveratrol displayed a lower antifouling activity compared to the multimers and had higher off target toxicity against MCR-5 fibroblasts. This study illustrates the potential of natural products as a valuable source for the discovery of novel antifouling leads with low toxicity.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/08927014.2023.2263374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2023.2263374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Evaluation of natural resveratrol multimers as marine antifoulants.
In the current study we investigate the antifouling potential of three polyphenolic resveratrol multimers (-)-hopeaphenol, vaticanol B and vatalbinoside A, isolated from two species of Anisoptera found in the Papua New Guinean rainforest. The compounds were evaluated against the growth and settlement of eight marine microfoulers and against the settlement and metamorphosis of Amphibalanus improvisus barnacle cyprids. The two isomeric compounds (-)-hopeaphenol and vaticanol B displayed a high inhibitory potential against the cyprid larvae metamorphosis at 2.8 and 1.1 μM. (-)-Hopeaphenol was also shown to be a strong inhibitor of both microalgal and bacterial adhesion at submicromolar concentrations with low toxicity. Resveratrol displayed a lower antifouling activity compared to the multimers and had higher off target toxicity against MCR-5 fibroblasts. This study illustrates the potential of natural products as a valuable source for the discovery of novel antifouling leads with low toxicity.