Zuanbo Zhou, Wenxin Yu, Junnian Wang, Yanming Zhao, Meiting Liu
{"title":"基于滑模理论和单片机的分数阶混沌保密通信电路设计","authors":"Zuanbo Zhou, Wenxin Yu, Junnian Wang, Yanming Zhao, Meiting Liu","doi":"10.1108/cw-03-2021-0078","DOIUrl":null,"url":null,"abstract":"\nPurpose\nWith the development of integrated circuit and communication technology, digital secure communication has become a research hotspot. This paper aims to design a five-dimensional fractional-order chaotic secure communication circuit with sliding mode synchronous based on microcontroller (MCU).\n\n\nDesign/methodology/approach\nFirst, a five-dimensional fractional-order chaotic system for encryption is constructed. The approximate numerical solution of fractional-order chaotic system is calculated by Adomian decomposition method, and the phase diagram is obtained. Then, combined with the complexity and 0–1 test algorithm, the parameters of fractional-order chaotic system for encryption are selected. In addition, a sliding mode controller based on the new reaching law is constructed, and its stability is proved. The chaotic system can be synchronized in a short time by using sliding mode control synchronization.\n\n\nFindings\nThe electronic circuit is implemented to verify the feasibility and effectiveness of the designed scheme.\n\n\nOriginality/value\nIt is feasible to realize fractional-order chaotic secure communication using MCU, and further reducing the synchronization error is the focus of future work.\n","PeriodicalId":50693,"journal":{"name":"Circuit World","volume":"58 10","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design of a fractional-order chaotic secure communication circuit based on sliding mode theory and microcontroller\",\"authors\":\"Zuanbo Zhou, Wenxin Yu, Junnian Wang, Yanming Zhao, Meiting Liu\",\"doi\":\"10.1108/cw-03-2021-0078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nWith the development of integrated circuit and communication technology, digital secure communication has become a research hotspot. This paper aims to design a five-dimensional fractional-order chaotic secure communication circuit with sliding mode synchronous based on microcontroller (MCU).\\n\\n\\nDesign/methodology/approach\\nFirst, a five-dimensional fractional-order chaotic system for encryption is constructed. The approximate numerical solution of fractional-order chaotic system is calculated by Adomian decomposition method, and the phase diagram is obtained. Then, combined with the complexity and 0–1 test algorithm, the parameters of fractional-order chaotic system for encryption are selected. In addition, a sliding mode controller based on the new reaching law is constructed, and its stability is proved. The chaotic system can be synchronized in a short time by using sliding mode control synchronization.\\n\\n\\nFindings\\nThe electronic circuit is implemented to verify the feasibility and effectiveness of the designed scheme.\\n\\n\\nOriginality/value\\nIt is feasible to realize fractional-order chaotic secure communication using MCU, and further reducing the synchronization error is the focus of future work.\\n\",\"PeriodicalId\":50693,\"journal\":{\"name\":\"Circuit World\",\"volume\":\"58 10\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circuit World\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/cw-03-2021-0078\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circuit World","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/cw-03-2021-0078","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design of a fractional-order chaotic secure communication circuit based on sliding mode theory and microcontroller
Purpose
With the development of integrated circuit and communication technology, digital secure communication has become a research hotspot. This paper aims to design a five-dimensional fractional-order chaotic secure communication circuit with sliding mode synchronous based on microcontroller (MCU).
Design/methodology/approach
First, a five-dimensional fractional-order chaotic system for encryption is constructed. The approximate numerical solution of fractional-order chaotic system is calculated by Adomian decomposition method, and the phase diagram is obtained. Then, combined with the complexity and 0–1 test algorithm, the parameters of fractional-order chaotic system for encryption are selected. In addition, a sliding mode controller based on the new reaching law is constructed, and its stability is proved. The chaotic system can be synchronized in a short time by using sliding mode control synchronization.
Findings
The electronic circuit is implemented to verify the feasibility and effectiveness of the designed scheme.
Originality/value
It is feasible to realize fractional-order chaotic secure communication using MCU, and further reducing the synchronization error is the focus of future work.
期刊介绍:
Circuit World is a platform for state of the art, technical papers and editorials in the areas of electronics circuit, component, assembly, and product design, manufacture, test, and use, including quality, reliability and safety. The journal comprises the multidisciplinary study of the various theories, methodologies, technologies, processes and applications relating to todays and future electronics. Circuit World provides a comprehensive and authoritative information source for research, application and current awareness purposes.
Circuit World covers a broad range of topics, including:
• Circuit theory, design methodology, analysis and simulation
• Digital, analog, microwave and optoelectronic integrated circuits
• Semiconductors, passives, connectors and sensors
• Electronic packaging of components, assemblies and products
• PCB design technologies and processes (controlled impedance, high-speed PCBs, laminates and lamination, laser processes and drilling, moulded interconnect devices, multilayer boards, optical PCBs, single- and double-sided boards, soldering and solderable finishes)
• Design for X (including manufacturability, quality, reliability, maintainability, sustainment, safety, reuse, disposal)
• Internet of Things (IoT).