{"title":"支持向量机在帕金森病预测中的优化","authors":"Turgut Özseven, Zübeyir Şükrü Özkorucu","doi":"10.2478/msr-2023-0001","DOIUrl":null,"url":null,"abstract":"Abstract As in all fields, technological developments have started to be used in the field of medical diagnosis, and computer-aided diagnosis systems have started to assist physicians in their diagnosis. The success of computer-aided diagnosis methods depends on the method used; dataset, pre-processing, post-processing, etc. differ according to the processes. In this study, parameter optimization of support vector machines was performed with four different methods currently used in the literature to assist the physician in diagnosis. The success of each method was tested on two different Parkinson’s datasets and the results were compared within themselves and with the literature. According to the results obtained, the highest accuracy rates vary depending on the dataset and optimization method. While Improved Chaotic Particle Swarm Optimization achieved high success in the first dataset, Bat Algorithm achieved higher success in the other dataset. While the successful results obtained are better than some studies in the literature, they are at a level that can compete with some studies.","PeriodicalId":49848,"journal":{"name":"Measurement Science Review","volume":"103 ","pages":"1 - 10"},"PeriodicalIF":1.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Support Vector Machines for Prediction of Parkinson’s Disease\",\"authors\":\"Turgut Özseven, Zübeyir Şükrü Özkorucu\",\"doi\":\"10.2478/msr-2023-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract As in all fields, technological developments have started to be used in the field of medical diagnosis, and computer-aided diagnosis systems have started to assist physicians in their diagnosis. The success of computer-aided diagnosis methods depends on the method used; dataset, pre-processing, post-processing, etc. differ according to the processes. In this study, parameter optimization of support vector machines was performed with four different methods currently used in the literature to assist the physician in diagnosis. The success of each method was tested on two different Parkinson’s datasets and the results were compared within themselves and with the literature. According to the results obtained, the highest accuracy rates vary depending on the dataset and optimization method. While Improved Chaotic Particle Swarm Optimization achieved high success in the first dataset, Bat Algorithm achieved higher success in the other dataset. While the successful results obtained are better than some studies in the literature, they are at a level that can compete with some studies.\",\"PeriodicalId\":49848,\"journal\":{\"name\":\"Measurement Science Review\",\"volume\":\"103 \",\"pages\":\"1 - 10\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement Science Review\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/msr-2023-0001\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/msr-2023-0001","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Optimization of Support Vector Machines for Prediction of Parkinson’s Disease
Abstract As in all fields, technological developments have started to be used in the field of medical diagnosis, and computer-aided diagnosis systems have started to assist physicians in their diagnosis. The success of computer-aided diagnosis methods depends on the method used; dataset, pre-processing, post-processing, etc. differ according to the processes. In this study, parameter optimization of support vector machines was performed with four different methods currently used in the literature to assist the physician in diagnosis. The success of each method was tested on two different Parkinson’s datasets and the results were compared within themselves and with the literature. According to the results obtained, the highest accuracy rates vary depending on the dataset and optimization method. While Improved Chaotic Particle Swarm Optimization achieved high success in the first dataset, Bat Algorithm achieved higher success in the other dataset. While the successful results obtained are better than some studies in the literature, they are at a level that can compete with some studies.
期刊介绍:
- theory of measurement - mathematical processing of measured data - measurement uncertainty minimisation - statistical methods in data evaluation and modelling - measurement as an interdisciplinary activity - measurement science in education - medical imaging methods, image processing - biosignal measurement, processing and analysis - model based biomeasurements - neural networks in biomeasurement - telemeasurement in biomedicine - measurement in nanomedicine - measurement of basic physical quantities - magnetic and electric fields measurements - measurement of geometrical and mechanical quantities - optical measuring methods - electromagnetic compatibility - measurement in material science