{"title":"基于Kinect动静态二维回归的体操骨骼数据补偿研究","authors":"Gang Zhao, Hui Zan, Junhong Chen","doi":"10.2478/msr-2022-0036","DOIUrl":null,"url":null,"abstract":"Abstract The intelligent training and assessment of gymnastics movements require studying motion trajectory and reconstructing the character animation. Microsoft Kinect has been widely used due to its advantages of low price and high frame rate. However, its optical characteristics are inevitably affected by illumination and occlusion. It is necessary to reduce data noise via specific algorithms. Most of the existing research focuses on local motion but lacks consideration of the whole human skeleton. Based on the analysis of the spatial characteristics of gymnastics and the movement principle of the human body, this paper proposes a dynamic and static two-dimensional regression compensation algorithm. Firstly, the constraint characteristics of human skeleton motion were analyzed, and the maximum constraint table and Mesh Collider were established. Then, the dynamic acceleration of skeleton motion and the spatial characteristics of static limb motion were calculated based on the data of adjacent effective skeleton frames before and after the collision. Finally, using the least squares polynomial fitting to compensate and correct the lost skeleton coordinate data, it realizes the smoothness and rationality of human skeleton animation. The results of two experiments showed that the solution of the skeleton point solved the problem caused by data loss due to the Kinect optical occlusion. The data compensation time of an effective block skeleton point can reach 180 ms, with an average error of about 0.1 mm, which shows a better data compensation effect of motion data acquisition and animation reconstruction.","PeriodicalId":49848,"journal":{"name":"Measurement Science Review","volume":"22 1","pages":"283 - 292"},"PeriodicalIF":1.0000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Research on Skeleton Data Compensation of Gymnastics based on Dynamic and Static Two-dimensional Regression using Kinect\",\"authors\":\"Gang Zhao, Hui Zan, Junhong Chen\",\"doi\":\"10.2478/msr-2022-0036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The intelligent training and assessment of gymnastics movements require studying motion trajectory and reconstructing the character animation. Microsoft Kinect has been widely used due to its advantages of low price and high frame rate. However, its optical characteristics are inevitably affected by illumination and occlusion. It is necessary to reduce data noise via specific algorithms. Most of the existing research focuses on local motion but lacks consideration of the whole human skeleton. Based on the analysis of the spatial characteristics of gymnastics and the movement principle of the human body, this paper proposes a dynamic and static two-dimensional regression compensation algorithm. Firstly, the constraint characteristics of human skeleton motion were analyzed, and the maximum constraint table and Mesh Collider were established. Then, the dynamic acceleration of skeleton motion and the spatial characteristics of static limb motion were calculated based on the data of adjacent effective skeleton frames before and after the collision. Finally, using the least squares polynomial fitting to compensate and correct the lost skeleton coordinate data, it realizes the smoothness and rationality of human skeleton animation. The results of two experiments showed that the solution of the skeleton point solved the problem caused by data loss due to the Kinect optical occlusion. The data compensation time of an effective block skeleton point can reach 180 ms, with an average error of about 0.1 mm, which shows a better data compensation effect of motion data acquisition and animation reconstruction.\",\"PeriodicalId\":49848,\"journal\":{\"name\":\"Measurement Science Review\",\"volume\":\"22 1\",\"pages\":\"283 - 292\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement Science Review\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/msr-2022-0036\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/msr-2022-0036","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Research on Skeleton Data Compensation of Gymnastics based on Dynamic and Static Two-dimensional Regression using Kinect
Abstract The intelligent training and assessment of gymnastics movements require studying motion trajectory and reconstructing the character animation. Microsoft Kinect has been widely used due to its advantages of low price and high frame rate. However, its optical characteristics are inevitably affected by illumination and occlusion. It is necessary to reduce data noise via specific algorithms. Most of the existing research focuses on local motion but lacks consideration of the whole human skeleton. Based on the analysis of the spatial characteristics of gymnastics and the movement principle of the human body, this paper proposes a dynamic and static two-dimensional regression compensation algorithm. Firstly, the constraint characteristics of human skeleton motion were analyzed, and the maximum constraint table and Mesh Collider were established. Then, the dynamic acceleration of skeleton motion and the spatial characteristics of static limb motion were calculated based on the data of adjacent effective skeleton frames before and after the collision. Finally, using the least squares polynomial fitting to compensate and correct the lost skeleton coordinate data, it realizes the smoothness and rationality of human skeleton animation. The results of two experiments showed that the solution of the skeleton point solved the problem caused by data loss due to the Kinect optical occlusion. The data compensation time of an effective block skeleton point can reach 180 ms, with an average error of about 0.1 mm, which shows a better data compensation effect of motion data acquisition and animation reconstruction.
期刊介绍:
- theory of measurement - mathematical processing of measured data - measurement uncertainty minimisation - statistical methods in data evaluation and modelling - measurement as an interdisciplinary activity - measurement science in education - medical imaging methods, image processing - biosignal measurement, processing and analysis - model based biomeasurements - neural networks in biomeasurement - telemeasurement in biomedicine - measurement in nanomedicine - measurement of basic physical quantities - magnetic and electric fields measurements - measurement of geometrical and mechanical quantities - optical measuring methods - electromagnetic compatibility - measurement in material science