基于Kinect动静态二维回归的体操骨骼数据补偿研究

IF 1 4区 工程技术 Q4 INSTRUMENTS & INSTRUMENTATION Measurement Science Review Pub Date : 2022-10-13 DOI:10.2478/msr-2022-0036
Gang Zhao, Hui Zan, Junhong Chen
{"title":"基于Kinect动静态二维回归的体操骨骼数据补偿研究","authors":"Gang Zhao, Hui Zan, Junhong Chen","doi":"10.2478/msr-2022-0036","DOIUrl":null,"url":null,"abstract":"Abstract The intelligent training and assessment of gymnastics movements require studying motion trajectory and reconstructing the character animation. Microsoft Kinect has been widely used due to its advantages of low price and high frame rate. However, its optical characteristics are inevitably affected by illumination and occlusion. It is necessary to reduce data noise via specific algorithms. Most of the existing research focuses on local motion but lacks consideration of the whole human skeleton. Based on the analysis of the spatial characteristics of gymnastics and the movement principle of the human body, this paper proposes a dynamic and static two-dimensional regression compensation algorithm. Firstly, the constraint characteristics of human skeleton motion were analyzed, and the maximum constraint table and Mesh Collider were established. Then, the dynamic acceleration of skeleton motion and the spatial characteristics of static limb motion were calculated based on the data of adjacent effective skeleton frames before and after the collision. Finally, using the least squares polynomial fitting to compensate and correct the lost skeleton coordinate data, it realizes the smoothness and rationality of human skeleton animation. The results of two experiments showed that the solution of the skeleton point solved the problem caused by data loss due to the Kinect optical occlusion. The data compensation time of an effective block skeleton point can reach 180 ms, with an average error of about 0.1 mm, which shows a better data compensation effect of motion data acquisition and animation reconstruction.","PeriodicalId":49848,"journal":{"name":"Measurement Science Review","volume":"22 1","pages":"283 - 292"},"PeriodicalIF":1.0000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Research on Skeleton Data Compensation of Gymnastics based on Dynamic and Static Two-dimensional Regression using Kinect\",\"authors\":\"Gang Zhao, Hui Zan, Junhong Chen\",\"doi\":\"10.2478/msr-2022-0036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The intelligent training and assessment of gymnastics movements require studying motion trajectory and reconstructing the character animation. Microsoft Kinect has been widely used due to its advantages of low price and high frame rate. However, its optical characteristics are inevitably affected by illumination and occlusion. It is necessary to reduce data noise via specific algorithms. Most of the existing research focuses on local motion but lacks consideration of the whole human skeleton. Based on the analysis of the spatial characteristics of gymnastics and the movement principle of the human body, this paper proposes a dynamic and static two-dimensional regression compensation algorithm. Firstly, the constraint characteristics of human skeleton motion were analyzed, and the maximum constraint table and Mesh Collider were established. Then, the dynamic acceleration of skeleton motion and the spatial characteristics of static limb motion were calculated based on the data of adjacent effective skeleton frames before and after the collision. Finally, using the least squares polynomial fitting to compensate and correct the lost skeleton coordinate data, it realizes the smoothness and rationality of human skeleton animation. The results of two experiments showed that the solution of the skeleton point solved the problem caused by data loss due to the Kinect optical occlusion. The data compensation time of an effective block skeleton point can reach 180 ms, with an average error of about 0.1 mm, which shows a better data compensation effect of motion data acquisition and animation reconstruction.\",\"PeriodicalId\":49848,\"journal\":{\"name\":\"Measurement Science Review\",\"volume\":\"22 1\",\"pages\":\"283 - 292\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement Science Review\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/msr-2022-0036\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/msr-2022-0036","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 2

摘要

摘要体操动作的智能训练和评估需要研究动作轨迹和重构人物动画。微软Kinect以其低廉的价格和高帧率的优势得到了广泛的应用。然而,其光学特性不可避免地受到光照和遮挡的影响。有必要通过特定的算法来减少数据噪声。现有的研究大多集中在局部运动上,但缺乏对整个人体骨骼的考虑。在分析体操运动的空间特征和人体运动原理的基础上,提出了一种动静态二维回归补偿算法。首先,分析了人体骨骼运动的约束特性,建立了最大约束表和网格碰撞器。然后,基于碰撞前后相邻有效骨架帧的数据,计算出骨架运动的动态加速度和静态肢体运动的空间特征。最后,利用最小二乘多项式拟合对丢失的骨骼坐标数据进行补偿和校正,实现了人体骨骼动画的平滑性和合理性。两个实验结果表明,骨架点的求解解决了Kinect光学遮挡导致数据丢失的问题。有效块骨架点的数据补偿时间可达180ms,平均误差约为0.1mm,显示出运动数据采集和动画重建的较好数据补偿效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on Skeleton Data Compensation of Gymnastics based on Dynamic and Static Two-dimensional Regression using Kinect
Abstract The intelligent training and assessment of gymnastics movements require studying motion trajectory and reconstructing the character animation. Microsoft Kinect has been widely used due to its advantages of low price and high frame rate. However, its optical characteristics are inevitably affected by illumination and occlusion. It is necessary to reduce data noise via specific algorithms. Most of the existing research focuses on local motion but lacks consideration of the whole human skeleton. Based on the analysis of the spatial characteristics of gymnastics and the movement principle of the human body, this paper proposes a dynamic and static two-dimensional regression compensation algorithm. Firstly, the constraint characteristics of human skeleton motion were analyzed, and the maximum constraint table and Mesh Collider were established. Then, the dynamic acceleration of skeleton motion and the spatial characteristics of static limb motion were calculated based on the data of adjacent effective skeleton frames before and after the collision. Finally, using the least squares polynomial fitting to compensate and correct the lost skeleton coordinate data, it realizes the smoothness and rationality of human skeleton animation. The results of two experiments showed that the solution of the skeleton point solved the problem caused by data loss due to the Kinect optical occlusion. The data compensation time of an effective block skeleton point can reach 180 ms, with an average error of about 0.1 mm, which shows a better data compensation effect of motion data acquisition and animation reconstruction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
Measurement Science Review
Measurement Science Review INSTRUMENTS & INSTRUMENTATION-
CiteScore
2.00
自引率
11.10%
发文量
37
审稿时长
4.8 months
期刊介绍: - theory of measurement - mathematical processing of measured data - measurement uncertainty minimisation - statistical methods in data evaluation and modelling - measurement as an interdisciplinary activity - measurement science in education - medical imaging methods, image processing - biosignal measurement, processing and analysis - model based biomeasurements - neural networks in biomeasurement - telemeasurement in biomedicine - measurement in nanomedicine - measurement of basic physical quantities - magnetic and electric fields measurements - measurement of geometrical and mechanical quantities - optical measuring methods - electromagnetic compatibility - measurement in material science
期刊最新文献
Accurate Solution of Adjustment Models of 3D Control Network Metamaterial Inspired Stub-Incorporated Quad-Band Diamond Shaped Monopole Antenna for Satellite and Wireless Application Influence of the Electrical Test Setup on the Voltage Gain Measurement of an Unloaded Rosen-Type Piezoelectric Transformer Vibrating in the First Three Modes ECG Arrhythmia Measurement and Classification for Portable Monitoring Adaptive Proportional Derivative Control for Magnetic Bearing in Full Maglev Left Ventricular Assist Device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1