{"title":"基于高效混合控制技术的单相降压型逆变器的设计与实现","authors":"F. Yalçın, U. Arifoglu, İ. Yazıcı","doi":"10.1108/cw-08-2021-0212","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis paper aims to present the design and implementation of a new general-purpose single-phase buck-type inverter.\n\n\nDesign/methodology/approach\nThe operation of the proposed inverter is based on the general-purpose buck converter. The proposed buck-type inverter topology is designed with reduced numbers of passive and active elements to minimize design cost and complexity. Also, an efficient hybrid control technique based on the proportional‐integral‐derivative (PID) supported by open-loop control signal is offered for the control of the proposed inverter. The proposed hybrid control method improves the performance of the PID controller during the change of inverter operation parameters. A close to single-phase sine wave output voltage with low total harmonic distortion (THD) can be produced by the proposed inverter in a wide range of voltage and frequency lower than the inverter input voltage value.\n\n\nFindings\nSimulation and experimental test studies are applied to the proposed inverter. The experimental laboratory setup is built for 0–50 Hz, 0–100 Vp, 0.5 kW. Both the simulation and the experimental test results show that the single-phase inverter can produce close to sine wave output voltage with THD level under 5% in a wide range of frequency for various operating conditions and for different loads.\n\n\nOriginality/value\nIn this paper, a new topology and a new hybrid control technique that are patented by the corresponding author are implemented for a single-phase buck-type inverter through a scientific project. The operating results of the study reveal the efficient operating capability with a simple topology structure.\n","PeriodicalId":50693,"journal":{"name":"Circuit World","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design and implementation of a single-phase buck-type inverter via an efficient hybrid control technique\",\"authors\":\"F. Yalçın, U. Arifoglu, İ. Yazıcı\",\"doi\":\"10.1108/cw-08-2021-0212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThis paper aims to present the design and implementation of a new general-purpose single-phase buck-type inverter.\\n\\n\\nDesign/methodology/approach\\nThe operation of the proposed inverter is based on the general-purpose buck converter. The proposed buck-type inverter topology is designed with reduced numbers of passive and active elements to minimize design cost and complexity. Also, an efficient hybrid control technique based on the proportional‐integral‐derivative (PID) supported by open-loop control signal is offered for the control of the proposed inverter. The proposed hybrid control method improves the performance of the PID controller during the change of inverter operation parameters. A close to single-phase sine wave output voltage with low total harmonic distortion (THD) can be produced by the proposed inverter in a wide range of voltage and frequency lower than the inverter input voltage value.\\n\\n\\nFindings\\nSimulation and experimental test studies are applied to the proposed inverter. The experimental laboratory setup is built for 0–50 Hz, 0–100 Vp, 0.5 kW. Both the simulation and the experimental test results show that the single-phase inverter can produce close to sine wave output voltage with THD level under 5% in a wide range of frequency for various operating conditions and for different loads.\\n\\n\\nOriginality/value\\nIn this paper, a new topology and a new hybrid control technique that are patented by the corresponding author are implemented for a single-phase buck-type inverter through a scientific project. The operating results of the study reveal the efficient operating capability with a simple topology structure.\\n\",\"PeriodicalId\":50693,\"journal\":{\"name\":\"Circuit World\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circuit World\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/cw-08-2021-0212\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circuit World","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/cw-08-2021-0212","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design and implementation of a single-phase buck-type inverter via an efficient hybrid control technique
Purpose
This paper aims to present the design and implementation of a new general-purpose single-phase buck-type inverter.
Design/methodology/approach
The operation of the proposed inverter is based on the general-purpose buck converter. The proposed buck-type inverter topology is designed with reduced numbers of passive and active elements to minimize design cost and complexity. Also, an efficient hybrid control technique based on the proportional‐integral‐derivative (PID) supported by open-loop control signal is offered for the control of the proposed inverter. The proposed hybrid control method improves the performance of the PID controller during the change of inverter operation parameters. A close to single-phase sine wave output voltage with low total harmonic distortion (THD) can be produced by the proposed inverter in a wide range of voltage and frequency lower than the inverter input voltage value.
Findings
Simulation and experimental test studies are applied to the proposed inverter. The experimental laboratory setup is built for 0–50 Hz, 0–100 Vp, 0.5 kW. Both the simulation and the experimental test results show that the single-phase inverter can produce close to sine wave output voltage with THD level under 5% in a wide range of frequency for various operating conditions and for different loads.
Originality/value
In this paper, a new topology and a new hybrid control technique that are patented by the corresponding author are implemented for a single-phase buck-type inverter through a scientific project. The operating results of the study reveal the efficient operating capability with a simple topology structure.
期刊介绍:
Circuit World is a platform for state of the art, technical papers and editorials in the areas of electronics circuit, component, assembly, and product design, manufacture, test, and use, including quality, reliability and safety. The journal comprises the multidisciplinary study of the various theories, methodologies, technologies, processes and applications relating to todays and future electronics. Circuit World provides a comprehensive and authoritative information source for research, application and current awareness purposes.
Circuit World covers a broad range of topics, including:
• Circuit theory, design methodology, analysis and simulation
• Digital, analog, microwave and optoelectronic integrated circuits
• Semiconductors, passives, connectors and sensors
• Electronic packaging of components, assemblies and products
• PCB design technologies and processes (controlled impedance, high-speed PCBs, laminates and lamination, laser processes and drilling, moulded interconnect devices, multilayer boards, optical PCBs, single- and double-sided boards, soldering and solderable finishes)
• Design for X (including manufacturability, quality, reliability, maintainability, sustainment, safety, reuse, disposal)
• Internet of Things (IoT).