水文气象站种数对2015年超级台风穆吉盖数值模拟的影响

IF 2.2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Asia-Pacific Journal of Atmospheric Sciences Pub Date : 2023-07-21 DOI:10.1007/s13143-023-00332-6
Simin Pang, Jiangnan Li, Tianyun Guo, Xiaoling Ma
{"title":"水文气象站种数对2015年超级台风穆吉盖数值模拟的影响","authors":"Simin Pang,&nbsp;Jiangnan Li,&nbsp;Tianyun Guo,&nbsp;Xiaoling Ma","doi":"10.1007/s13143-023-00332-6","DOIUrl":null,"url":null,"abstract":"<div><p>The same family four single-moment microphysics schemes (WSM3, WSM5, WSM6, and WSM7) were selected to simulate the tropical cyclone (TC) Mujigae in 2015 over the South China Sea using the Weather Research and Forecasting (WRF) model. The effect of the species number of hydrometeors (SNH) used in these schemes on the track, intensity, precipitation, and structure of the TC is investigated. SNH has a slight impact on the TC track, while a significant effect on the TC intensity. The WSM6 scheme has the best skill to reproduce the minimum sea level pressure (MSLP). The WSM3 scheme has the highest simulation score for the maximum surface wind (MSW) speed. In general, the simulated TC intensity is strengthened as SNH increased, while weakened with the addition of hail. SNH affects structure and thus the TC intensity. The TC simulated by WSM6 scheme, with the smallest eye area and the radius of maximum wind, the strongest cloud wall convection, warm core, convergence in the lower layer, and divergence in the upper layer, simulates the minimum MSLP, which is closest to the observation. The four schemes can well reproduce precipitation distribution. The relationship between the total hydrometeor content and the TC intensity is non-linear. The total hydrometeor content simulated by the WSM3 scheme is the most while that by the WSM6 scheme is the least. However, the cloud ice simulated by the WSM6 scheme is the most. The graupel simulated by the WSM6 scheme is more than that by the WSM7 scheme. SNH modifies the microphysical conversion process and latent heat efficiency, and further affects the structure and intensity of TC.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 1","pages":"29 - 47"},"PeriodicalIF":2.2000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of the Species Number of Hydrometeors on Numerical Simulation of the Super Typhoon Mujigae in 2015\",\"authors\":\"Simin Pang,&nbsp;Jiangnan Li,&nbsp;Tianyun Guo,&nbsp;Xiaoling Ma\",\"doi\":\"10.1007/s13143-023-00332-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The same family four single-moment microphysics schemes (WSM3, WSM5, WSM6, and WSM7) were selected to simulate the tropical cyclone (TC) Mujigae in 2015 over the South China Sea using the Weather Research and Forecasting (WRF) model. The effect of the species number of hydrometeors (SNH) used in these schemes on the track, intensity, precipitation, and structure of the TC is investigated. SNH has a slight impact on the TC track, while a significant effect on the TC intensity. The WSM6 scheme has the best skill to reproduce the minimum sea level pressure (MSLP). The WSM3 scheme has the highest simulation score for the maximum surface wind (MSW) speed. In general, the simulated TC intensity is strengthened as SNH increased, while weakened with the addition of hail. SNH affects structure and thus the TC intensity. The TC simulated by WSM6 scheme, with the smallest eye area and the radius of maximum wind, the strongest cloud wall convection, warm core, convergence in the lower layer, and divergence in the upper layer, simulates the minimum MSLP, which is closest to the observation. The four schemes can well reproduce precipitation distribution. The relationship between the total hydrometeor content and the TC intensity is non-linear. The total hydrometeor content simulated by the WSM3 scheme is the most while that by the WSM6 scheme is the least. However, the cloud ice simulated by the WSM6 scheme is the most. The graupel simulated by the WSM6 scheme is more than that by the WSM7 scheme. SNH modifies the microphysical conversion process and latent heat efficiency, and further affects the structure and intensity of TC.</p></div>\",\"PeriodicalId\":8556,\"journal\":{\"name\":\"Asia-Pacific Journal of Atmospheric Sciences\",\"volume\":\"60 1\",\"pages\":\"29 - 47\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Journal of Atmospheric Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13143-023-00332-6\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s13143-023-00332-6","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

利用天气研究和预报(WRF)模式,选择了相同系列的四个单时刻微物理方案(WSM3、WSM5、WSM6 和 WSM7)来模拟 2015 年南海热带气旋(TC)"木槿花"。研究了这些方案中使用的水文介质种数(SNH)对热带气旋的路径、强度、降水和结构的影响。SNH对TC路径的影响较小,而对TC强度的影响较大。WSM6 方案对最低海平面气压(MSLP)的再现能力最强。WSM3 方案对最大表面风速(MSW)的模拟得分最高。一般来说,模拟的热带气旋强度随着SNH的增加而增强,而随着冰雹的增加而减弱。SNH会影响结构,从而影响热气旋强度。WSM6方案模拟的TC,风眼面积和最大风半径最小,云墙对流最强,核心温暖,下层辐合,上层发散,模拟的MSLP最小,与观测结果最接近。四种方案都能很好地再现降水分布。总水气含量与 TC 强度之间是非线性关系。WSM3 方案模拟的总水流星含量最多,而 WSM6 方案模拟的总水流星含量最少。然而,WSM6 方案模拟的云冰是最多的。WSM6 方案模拟的石榴石比 WSM7 方案多。SNH改变了微物理转换过程和潜热效率,进一步影响了TC的结构和强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of the Species Number of Hydrometeors on Numerical Simulation of the Super Typhoon Mujigae in 2015

The same family four single-moment microphysics schemes (WSM3, WSM5, WSM6, and WSM7) were selected to simulate the tropical cyclone (TC) Mujigae in 2015 over the South China Sea using the Weather Research and Forecasting (WRF) model. The effect of the species number of hydrometeors (SNH) used in these schemes on the track, intensity, precipitation, and structure of the TC is investigated. SNH has a slight impact on the TC track, while a significant effect on the TC intensity. The WSM6 scheme has the best skill to reproduce the minimum sea level pressure (MSLP). The WSM3 scheme has the highest simulation score for the maximum surface wind (MSW) speed. In general, the simulated TC intensity is strengthened as SNH increased, while weakened with the addition of hail. SNH affects structure and thus the TC intensity. The TC simulated by WSM6 scheme, with the smallest eye area and the radius of maximum wind, the strongest cloud wall convection, warm core, convergence in the lower layer, and divergence in the upper layer, simulates the minimum MSLP, which is closest to the observation. The four schemes can well reproduce precipitation distribution. The relationship between the total hydrometeor content and the TC intensity is non-linear. The total hydrometeor content simulated by the WSM3 scheme is the most while that by the WSM6 scheme is the least. However, the cloud ice simulated by the WSM6 scheme is the most. The graupel simulated by the WSM6 scheme is more than that by the WSM7 scheme. SNH modifies the microphysical conversion process and latent heat efficiency, and further affects the structure and intensity of TC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asia-Pacific Journal of Atmospheric Sciences
Asia-Pacific Journal of Atmospheric Sciences 地学-气象与大气科学
CiteScore
5.50
自引率
4.30%
发文量
34
审稿时长
>12 weeks
期刊介绍: The Asia-Pacific Journal of Atmospheric Sciences (APJAS) is an international journal of the Korean Meteorological Society (KMS), published fully in English. It has started from 2008 by succeeding the KMS'' former journal, the Journal of the Korean Meteorological Society (JKMS), which published a total of 47 volumes as of 2011, in its time-honored tradition since 1965. Since 2008, the APJAS is included in the journal list of Thomson Reuters’ SCIE (Science Citation Index Expanded) and also in SCOPUS, the Elsevier Bibliographic Database, indicating the increased awareness and quality of the journal.
期刊最新文献
Impact of Arctic Sea Ice Representation on Extended Medium-Range Forecasting: a Case Study of the 2016 Barents-Kara Sea Warming Event Comparative Analysis of GloSea6 Hindcasts for Two Extreme El Niño Events and Their Impact on Indo-Western North Pacific Climate Microphysical Characteristics of Snowfall in Seoul, South Korea and Their Changes with Meteorological Conditions Correction: Forecast Accuracy and Physics Sensitivity in High-Resolution Simulations of Precipitation Events in Summer 2022 by the Korean Integrated Model Comprehensive Analysis of PM2.5 Concentrations in the Seoul Metro Underground Stations: Relationships with Indoor Sources and Outdoor Air Quality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1