{"title":"窄通道一维断续行人流中走走停停波的特征","authors":"H. Gayathri, Siddhartha Gulhare, A. Verma","doi":"10.17815/CD.2018.18","DOIUrl":null,"url":null,"abstract":"Pedestrian microscopic simulation models can aid crowd management only if they can reproduce the crowd behavior correctly. To calibrate and validate the model, it is important to understand crowd movement during various activities involved in mass gathering events. A common practice in such gathering is to hold attendees in waiting area in near corridors separated by crowd barriers before the event and allow entering the event only after a designated time. The crowd is released in small batches to avoid overcrowding inside. Long waiting hours, anger, excitement, competitive feeling etc. can make crowd aggressive during such entries. Crowd flow characteristics due to such behavior is difficult to recreate in pedestrian experimental studies in laboratory setting. This paper studied interrupted flow of such crowd through a narrow corridors made of strong railing channel inside a temple. Interrupted flow lead to formation of one dimensional stop and go waves. These stop and go waves were studied from the trajectory data. The average speed of waves propagating over longer distance were also estimated. The quantitative output from this study can be used to calibrate and validate simulation models of such activity during mass gathering events.","PeriodicalId":93276,"journal":{"name":"Collective dynamics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Characteristics of Stop and Go Wave in One Dimensional Interrupted Pedestrian Flow Through Narrow Channel\",\"authors\":\"H. Gayathri, Siddhartha Gulhare, A. Verma\",\"doi\":\"10.17815/CD.2018.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pedestrian microscopic simulation models can aid crowd management only if they can reproduce the crowd behavior correctly. To calibrate and validate the model, it is important to understand crowd movement during various activities involved in mass gathering events. A common practice in such gathering is to hold attendees in waiting area in near corridors separated by crowd barriers before the event and allow entering the event only after a designated time. The crowd is released in small batches to avoid overcrowding inside. Long waiting hours, anger, excitement, competitive feeling etc. can make crowd aggressive during such entries. Crowd flow characteristics due to such behavior is difficult to recreate in pedestrian experimental studies in laboratory setting. This paper studied interrupted flow of such crowd through a narrow corridors made of strong railing channel inside a temple. Interrupted flow lead to formation of one dimensional stop and go waves. These stop and go waves were studied from the trajectory data. The average speed of waves propagating over longer distance were also estimated. The quantitative output from this study can be used to calibrate and validate simulation models of such activity during mass gathering events.\",\"PeriodicalId\":93276,\"journal\":{\"name\":\"Collective dynamics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Collective dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17815/CD.2018.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collective dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17815/CD.2018.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Characteristics of Stop and Go Wave in One Dimensional Interrupted Pedestrian Flow Through Narrow Channel
Pedestrian microscopic simulation models can aid crowd management only if they can reproduce the crowd behavior correctly. To calibrate and validate the model, it is important to understand crowd movement during various activities involved in mass gathering events. A common practice in such gathering is to hold attendees in waiting area in near corridors separated by crowd barriers before the event and allow entering the event only after a designated time. The crowd is released in small batches to avoid overcrowding inside. Long waiting hours, anger, excitement, competitive feeling etc. can make crowd aggressive during such entries. Crowd flow characteristics due to such behavior is difficult to recreate in pedestrian experimental studies in laboratory setting. This paper studied interrupted flow of such crowd through a narrow corridors made of strong railing channel inside a temple. Interrupted flow lead to formation of one dimensional stop and go waves. These stop and go waves were studied from the trajectory data. The average speed of waves propagating over longer distance were also estimated. The quantitative output from this study can be used to calibrate and validate simulation models of such activity during mass gathering events.