{"title":"用于肾癌生物标志物检测的染料共轭微型纸条浸渍系统","authors":"Anjali Takke, P. Shende","doi":"10.1108/sr-02-2022-0055","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe purpose of this study was to design a paper strip-based non-invasive urine analysis system for the qualitative detection of biomarker aquaporin-1 (AQP1) in renal cancer (RC). RC accounts for 3% of all cancers and 85% of all kidney tumors and mainly originates from the kidney cortex. In recent times, higher urine concentration of AQP1 in patients with RC was confirmed as a specific biomarker of the disease. Hence, the noninvasive, user-friendly and self-diagnostic method is required for the detection of aquaporin biomarkers in RC.\n\n\nDesign/methodology/approach\nThe present research work was focused on the development and characterization of a dye conjugated cyclodextrin-based miniaturized system for impregnation on Whatman filter paper to identify RC using AQP1 biomarker present in urine samples.\n\n\nFindings\nIt was observed that the test strip dipped into the urine sample, and the yellow color intensity increased with a decrease in AQP1 concentration due to the transformation of the dye system of free basic form into bound acidic form. The Hue-Saturation-Value profiling was used to observe the effect of color change using a smartphone application. The paper strip-based urine analysis system is highly sensitive for the detection of AQP1 in the range of 10 to 1,000 ng.\n\n\nOriginality/value\nThe successful validation indicated that this biosensor is likely to contribute to the development of point-of-care, novel, personalized diagnostics and ensure prolonged survival of RC patients in the near future.\n","PeriodicalId":49540,"journal":{"name":"Sensor Review","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impregnation of dye-conjugated miniaturized system on paper strip for detection of biomarker in renal cancer\",\"authors\":\"Anjali Takke, P. Shende\",\"doi\":\"10.1108/sr-02-2022-0055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThe purpose of this study was to design a paper strip-based non-invasive urine analysis system for the qualitative detection of biomarker aquaporin-1 (AQP1) in renal cancer (RC). RC accounts for 3% of all cancers and 85% of all kidney tumors and mainly originates from the kidney cortex. In recent times, higher urine concentration of AQP1 in patients with RC was confirmed as a specific biomarker of the disease. Hence, the noninvasive, user-friendly and self-diagnostic method is required for the detection of aquaporin biomarkers in RC.\\n\\n\\nDesign/methodology/approach\\nThe present research work was focused on the development and characterization of a dye conjugated cyclodextrin-based miniaturized system for impregnation on Whatman filter paper to identify RC using AQP1 biomarker present in urine samples.\\n\\n\\nFindings\\nIt was observed that the test strip dipped into the urine sample, and the yellow color intensity increased with a decrease in AQP1 concentration due to the transformation of the dye system of free basic form into bound acidic form. The Hue-Saturation-Value profiling was used to observe the effect of color change using a smartphone application. The paper strip-based urine analysis system is highly sensitive for the detection of AQP1 in the range of 10 to 1,000 ng.\\n\\n\\nOriginality/value\\nThe successful validation indicated that this biosensor is likely to contribute to the development of point-of-care, novel, personalized diagnostics and ensure prolonged survival of RC patients in the near future.\\n\",\"PeriodicalId\":49540,\"journal\":{\"name\":\"Sensor Review\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensor Review\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/sr-02-2022-0055\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensor Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/sr-02-2022-0055","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Impregnation of dye-conjugated miniaturized system on paper strip for detection of biomarker in renal cancer
Purpose
The purpose of this study was to design a paper strip-based non-invasive urine analysis system for the qualitative detection of biomarker aquaporin-1 (AQP1) in renal cancer (RC). RC accounts for 3% of all cancers and 85% of all kidney tumors and mainly originates from the kidney cortex. In recent times, higher urine concentration of AQP1 in patients with RC was confirmed as a specific biomarker of the disease. Hence, the noninvasive, user-friendly and self-diagnostic method is required for the detection of aquaporin biomarkers in RC.
Design/methodology/approach
The present research work was focused on the development and characterization of a dye conjugated cyclodextrin-based miniaturized system for impregnation on Whatman filter paper to identify RC using AQP1 biomarker present in urine samples.
Findings
It was observed that the test strip dipped into the urine sample, and the yellow color intensity increased with a decrease in AQP1 concentration due to the transformation of the dye system of free basic form into bound acidic form. The Hue-Saturation-Value profiling was used to observe the effect of color change using a smartphone application. The paper strip-based urine analysis system is highly sensitive for the detection of AQP1 in the range of 10 to 1,000 ng.
Originality/value
The successful validation indicated that this biosensor is likely to contribute to the development of point-of-care, novel, personalized diagnostics and ensure prolonged survival of RC patients in the near future.
期刊介绍:
Sensor Review publishes peer reviewed state-of-the-art articles and specially commissioned technology reviews. Each issue of this multidisciplinary journal includes high quality original content covering all aspects of sensors and their applications, and reflecting the most interesting and strategically important research and development activities from around the world. Because of this, readers can stay at the very forefront of high technology sensor developments.
Emphasis is placed on detailed independent regular and review articles identifying the full range of sensors currently available for specific applications, as well as highlighting those areas of technology showing great potential for the future. The journal encourages authors to consider the practical and social implications of their articles.
All articles undergo a rigorous double-blind peer review process which involves an initial assessment of suitability of an article for the journal followed by sending it to, at least two reviewers in the field if deemed suitable.
Sensor Review’s coverage includes, but is not restricted to:
Mechanical sensors – position, displacement, proximity, velocity, acceleration, vibration, force, torque, pressure, and flow sensors
Electric and magnetic sensors – resistance, inductive, capacitive, piezoelectric, eddy-current, electromagnetic, photoelectric, and thermoelectric sensors
Temperature sensors, infrared sensors, humidity sensors
Optical, electro-optical and fibre-optic sensors and systems, photonic sensors
Biosensors, wearable and implantable sensors and systems, immunosensors
Gas and chemical sensors and systems, polymer sensors
Acoustic and ultrasonic sensors
Haptic sensors and devices
Smart and intelligent sensors and systems
Nanosensors, NEMS, MEMS, and BioMEMS
Quantum sensors
Sensor systems: sensor data fusion, signals, processing and interfacing, signal conditioning.