基于双馈感应发电机的风电系统滑模功率控制改进

Btissam Majout, Douae Abrahmi, Y. Ihedrane, Chakib El Bakkali, K. Mohammed, B. Bossoufi
{"title":"基于双馈感应发电机的风电系统滑模功率控制改进","authors":"Btissam Majout, Douae Abrahmi, Y. Ihedrane, Chakib El Bakkali, K. Mohammed, B. Bossoufi","doi":"10.11591/IJPEDS.V12.I1.PP441-452","DOIUrl":null,"url":null,"abstract":"In this work, we are interested in improving the performance of a doubly-fed induction generator (DFIG)-based wind system, by applying a sliding mode control strategy. The objective is the regulation of the active and reactive power, also the voltage and the frequency of the signal injected into the distribution network. The model proposed for the control is based on the sliding mode technique with performance estimators. The proposed model was validated by a simulation on MATLAB/Simulink.","PeriodicalId":38280,"journal":{"name":"International Journal of Power Electronics and Drive Systems","volume":"12 1","pages":"441-452"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improvement of sliding mode power control applied to wind system based on doubly-fed induction generator\",\"authors\":\"Btissam Majout, Douae Abrahmi, Y. Ihedrane, Chakib El Bakkali, K. Mohammed, B. Bossoufi\",\"doi\":\"10.11591/IJPEDS.V12.I1.PP441-452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we are interested in improving the performance of a doubly-fed induction generator (DFIG)-based wind system, by applying a sliding mode control strategy. The objective is the regulation of the active and reactive power, also the voltage and the frequency of the signal injected into the distribution network. The model proposed for the control is based on the sliding mode technique with performance estimators. The proposed model was validated by a simulation on MATLAB/Simulink.\",\"PeriodicalId\":38280,\"journal\":{\"name\":\"International Journal of Power Electronics and Drive Systems\",\"volume\":\"12 1\",\"pages\":\"441-452\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Power Electronics and Drive Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/IJPEDS.V12.I1.PP441-452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Power Electronics and Drive Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/IJPEDS.V12.I1.PP441-452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们感兴趣的是通过应用滑模控制策略来提高基于双馈感应发电机(DFIG)的风力系统的性能。目标是调节有功和无功功率,以及注入配电网的信号的电压和频率。所提出的控制模型是基于带有性能估计器的滑模技术。该模型在MATLAB/Simulink上进行了仿真验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improvement of sliding mode power control applied to wind system based on doubly-fed induction generator
In this work, we are interested in improving the performance of a doubly-fed induction generator (DFIG)-based wind system, by applying a sliding mode control strategy. The objective is the regulation of the active and reactive power, also the voltage and the frequency of the signal injected into the distribution network. The model proposed for the control is based on the sliding mode technique with performance estimators. The proposed model was validated by a simulation on MATLAB/Simulink.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Power Electronics and Drive Systems
International Journal of Power Electronics and Drive Systems Energy-Energy Engineering and Power Technology
CiteScore
3.50
自引率
0.00%
发文量
0
期刊介绍: International Journal of Power Electronics and Drive Systems (IJPEDS) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of power electronics and electrical drive systems from the global world. The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, applications in motor drives, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.
期刊最新文献
Mitigation of harmonic distortions in third rail electrical systems A new direct current circuit breaker with current regeneration capability Modeling and Control of a Hybrid DC/DC/AC Converter to Transfer Power under Different Power Management Strategies Energy, economic and environmental analysis of fuzzy logic controllers used in smart buildings Adaptive dynamic programming algorithm for uncertain nonlinear switched systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1