Soheil Zehsaz, João L. M. P. de Lima, Jorge M. G. P. Isidoro, M. P. D. de Lima, Ricardo Martins
{"title":"基于荧光奎宁的跟踪技术在低亮度条件下使用UAS测量明渠表面流速","authors":"Soheil Zehsaz, João L. M. P. de Lima, Jorge M. G. P. Isidoro, M. P. D. de Lima, Ricardo Martins","doi":"10.2166/nh.2023.011","DOIUrl":null,"url":null,"abstract":"\n \n This study presents techniques based on the use of fluorescent quinine as a visual tracer for surface flows, to assess surface flow velocities in channels and streams under low luminosity conditions. Fieldwork was conducted in three open channels, with different hydraulic characteristics. A quinine solution, in both liquid and solid (ice cube) forms, was applied on the water flow surface and an Unmanned Aerial System (UAS) was used to record the movement of the fluorescent quinine. The results were compared to the velocities estimated using the thermal tracer technique and flowmeter-based velocity maps. The findings show that the quinine solution, in both liquid and solid forms, can be used to estimate open-channel surface flow velocities under low luminosity conditions. While the solid form of the quinine tracer was applied in a smaller volume than the liquid tracer, its fluorescence effect persisted longer. By comparison, the liquid tracer had the advantage of continual availability and was devoid of the constraint of melting.","PeriodicalId":55040,"journal":{"name":"Hydrology Research","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluorescent quinine-based tracking techniques for measurement of open-channel surface flow velocities under low luminosity conditions using a UAS\",\"authors\":\"Soheil Zehsaz, João L. M. P. de Lima, Jorge M. G. P. Isidoro, M. P. D. de Lima, Ricardo Martins\",\"doi\":\"10.2166/nh.2023.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n This study presents techniques based on the use of fluorescent quinine as a visual tracer for surface flows, to assess surface flow velocities in channels and streams under low luminosity conditions. Fieldwork was conducted in three open channels, with different hydraulic characteristics. A quinine solution, in both liquid and solid (ice cube) forms, was applied on the water flow surface and an Unmanned Aerial System (UAS) was used to record the movement of the fluorescent quinine. The results were compared to the velocities estimated using the thermal tracer technique and flowmeter-based velocity maps. The findings show that the quinine solution, in both liquid and solid forms, can be used to estimate open-channel surface flow velocities under low luminosity conditions. While the solid form of the quinine tracer was applied in a smaller volume than the liquid tracer, its fluorescence effect persisted longer. By comparison, the liquid tracer had the advantage of continual availability and was devoid of the constraint of melting.\",\"PeriodicalId\":55040,\"journal\":{\"name\":\"Hydrology Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrology Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/nh.2023.011\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/nh.2023.011","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
Fluorescent quinine-based tracking techniques for measurement of open-channel surface flow velocities under low luminosity conditions using a UAS
This study presents techniques based on the use of fluorescent quinine as a visual tracer for surface flows, to assess surface flow velocities in channels and streams under low luminosity conditions. Fieldwork was conducted in three open channels, with different hydraulic characteristics. A quinine solution, in both liquid and solid (ice cube) forms, was applied on the water flow surface and an Unmanned Aerial System (UAS) was used to record the movement of the fluorescent quinine. The results were compared to the velocities estimated using the thermal tracer technique and flowmeter-based velocity maps. The findings show that the quinine solution, in both liquid and solid forms, can be used to estimate open-channel surface flow velocities under low luminosity conditions. While the solid form of the quinine tracer was applied in a smaller volume than the liquid tracer, its fluorescence effect persisted longer. By comparison, the liquid tracer had the advantage of continual availability and was devoid of the constraint of melting.
期刊介绍:
Hydrology Research provides international coverage on all aspects of hydrology in its widest sense, and welcomes the submission of papers from across the subject. While emphasis is placed on studies of the hydrological cycle, the Journal also covers the physics and chemistry of water. Hydrology Research is intended to be a link between basic hydrological research and the practical application of scientific results within the broad field of water management.