自由下落水射流诱导垂直管道内的气流

IF 2.4 3区 环境科学与生态学 Q2 ENGINEERING, CIVIL Journal of Hydro-environment Research Pub Date : 2022-09-01 DOI:10.1016/j.jher.2022.07.003
Yiyi Ma , Pengcheng Li , David Z. Zhu , Abdul Khan
{"title":"自由下落水射流诱导垂直管道内的气流","authors":"Yiyi Ma ,&nbsp;Pengcheng Li ,&nbsp;David Z. Zhu ,&nbsp;Abdul Khan","doi":"10.1016/j.jher.2022.07.003","DOIUrl":null,"url":null,"abstract":"<div><p>The air flow induced by a water jet freely falling inside a vertical pipe with its top and bottom both open to the atmosphere was investigated experimentally and numerically. In the experiments, the radial air velocity distribution and the air pressure variation along the vertical pipe were measured. The air drag of the falling water jet was related to the jet surface disturbance and analyzed by introducing the equivalent friction factor. A predictive model was developed for the air flow inside a 3-m-high pipe based on the momentum equation and its results compared well with the experimental measurements. Numerical simulations were also conducted by approximating the free-falling water jet as a continuous moving solid with diameter and velocity varying in the direction of motion. The effects of pipe size on the air velocity profile and the induced air flow rate were examined. The simulation results showed that the streamwise air velocity profiles inside pipes of different sizes approached the same after a certain traveling distance. The maximum induced air flow rate was found at the pipe diameter of about 20 times of initial water jet diameter.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Air flow inside a vertical pipe induced by a free-falling water jet\",\"authors\":\"Yiyi Ma ,&nbsp;Pengcheng Li ,&nbsp;David Z. Zhu ,&nbsp;Abdul Khan\",\"doi\":\"10.1016/j.jher.2022.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The air flow induced by a water jet freely falling inside a vertical pipe with its top and bottom both open to the atmosphere was investigated experimentally and numerically. In the experiments, the radial air velocity distribution and the air pressure variation along the vertical pipe were measured. The air drag of the falling water jet was related to the jet surface disturbance and analyzed by introducing the equivalent friction factor. A predictive model was developed for the air flow inside a 3-m-high pipe based on the momentum equation and its results compared well with the experimental measurements. Numerical simulations were also conducted by approximating the free-falling water jet as a continuous moving solid with diameter and velocity varying in the direction of motion. The effects of pipe size on the air velocity profile and the induced air flow rate were examined. The simulation results showed that the streamwise air velocity profiles inside pipes of different sizes approached the same after a certain traveling distance. The maximum induced air flow rate was found at the pipe diameter of about 20 times of initial water jet diameter.</p></div>\",\"PeriodicalId\":49303,\"journal\":{\"name\":\"Journal of Hydro-environment Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydro-environment Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570644322000430\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydro-environment Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570644322000430","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

用实验和数值方法研究了水射流在上下都对大气开放的垂直管道内自由落体所引起的气流。在实验中,测量了沿垂直管道的径向风速分布和气压变化。通过引入等效摩擦系数,分析了水射流的空气阻力与射流表面扰动的关系。基于动量方程建立了3 m高管道内气流的预测模型,其结果与实验测量结果吻合较好。将自由落体水射流近似为直径和速度随运动方向变化的连续运动固体,进行了数值模拟。研究了管道尺寸对气流速度分布和诱导气流流量的影响。模拟结果表明,不同尺寸的管道在经过一定距离后,其流向气流速度分布趋于一致。当管道直径约为初始水射流直径的20倍时,诱导空气流量最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Air flow inside a vertical pipe induced by a free-falling water jet

The air flow induced by a water jet freely falling inside a vertical pipe with its top and bottom both open to the atmosphere was investigated experimentally and numerically. In the experiments, the radial air velocity distribution and the air pressure variation along the vertical pipe were measured. The air drag of the falling water jet was related to the jet surface disturbance and analyzed by introducing the equivalent friction factor. A predictive model was developed for the air flow inside a 3-m-high pipe based on the momentum equation and its results compared well with the experimental measurements. Numerical simulations were also conducted by approximating the free-falling water jet as a continuous moving solid with diameter and velocity varying in the direction of motion. The effects of pipe size on the air velocity profile and the induced air flow rate were examined. The simulation results showed that the streamwise air velocity profiles inside pipes of different sizes approached the same after a certain traveling distance. The maximum induced air flow rate was found at the pipe diameter of about 20 times of initial water jet diameter.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydro-environment Research
Journal of Hydro-environment Research ENGINEERING, CIVIL-ENVIRONMENTAL SCIENCES
CiteScore
5.80
自引率
0.00%
发文量
34
审稿时长
98 days
期刊介绍: The journal aims to provide an international platform for the dissemination of research and engineering applications related to water and hydraulic problems in the Asia-Pacific region. The journal provides a wide distribution at affordable subscription rate, as well as a rapid reviewing and publication time. The journal particularly encourages papers from young researchers. Papers that require extensive language editing, qualify for editorial assistance with American Journal Experts, a Language Editing Company that Elsevier recommends. Authors submitting to this journal are entitled to a 10% discount.
期刊最新文献
Editorial Board The effects of climate change and regional water supply capacity on integrated drought risk Runoff prediction based on the IGWOLSTM model: Achieving accurate flood forecasting and emergency management Enhancing non-newtonian fluid modeling: A novel extension of the cross flow curve model Corrigendum to “Self-aeration on large dam spillways during major floods” [J. Hydro-Environ. Res. 54 (2024) 26–36]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1