Stanislav Lytvyn , Elena Vazhnichaya , Yurii Kurapov , Oleksandr Semaka , Lyubov Babijchuk , Pavlo Zubov
{"title":"在氯化钠基质中沉积的磁铁矿纳米颗粒及其功能化类似物在红细胞中的细胞毒性","authors":"Stanislav Lytvyn , Elena Vazhnichaya , Yurii Kurapov , Oleksandr Semaka , Lyubov Babijchuk , Pavlo Zubov","doi":"10.1016/j.onano.2023.100143","DOIUrl":null,"url":null,"abstract":"<div><p>The synthesis of covered nanoparticles provides new properties to the materials for biomedical applications. This fully applies to iron oxide nanoparticles. The research aim was to study features of the magnetite nanoparticles synthesized by electron beam technology as well as to investigate their functionalization and cytotoxicity. Nanoparticle characteristics were determined by standard methods. Cytotoxiciy of nanoparticles was studied using erythrocyte model. It was shown that the original magnetite nanoparticles in the sodium chloride matrix can be functionalized with polyvinylpyrrolidone and ethylmethylhydroxypyridine succinate, an antioxidant. All investigated nanoparticles were non-toxic for erythrocytes at concentrations up to 100 μg Fe/ml. At 100-200 μg Fe/ml, they increased the amount of cells expressing phosphatidylserine on the outer membrane, the count of pathological forms of erythrocytes and hemolysis. These phenomena were less pronounced if the nanosystem included the antioxidant. Therefore, magnetite nanoparticles can be obtained by electron beam technology and functionalized to form non-toxic nanosystems.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"11 ","pages":"Article 100143"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cytotoxicity of magnetite nanoparticles deposited in sodium chloride matrix and their functionalized analogues in erythrocytes\",\"authors\":\"Stanislav Lytvyn , Elena Vazhnichaya , Yurii Kurapov , Oleksandr Semaka , Lyubov Babijchuk , Pavlo Zubov\",\"doi\":\"10.1016/j.onano.2023.100143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The synthesis of covered nanoparticles provides new properties to the materials for biomedical applications. This fully applies to iron oxide nanoparticles. The research aim was to study features of the magnetite nanoparticles synthesized by electron beam technology as well as to investigate their functionalization and cytotoxicity. Nanoparticle characteristics were determined by standard methods. Cytotoxiciy of nanoparticles was studied using erythrocyte model. It was shown that the original magnetite nanoparticles in the sodium chloride matrix can be functionalized with polyvinylpyrrolidone and ethylmethylhydroxypyridine succinate, an antioxidant. All investigated nanoparticles were non-toxic for erythrocytes at concentrations up to 100 μg Fe/ml. At 100-200 μg Fe/ml, they increased the amount of cells expressing phosphatidylserine on the outer membrane, the count of pathological forms of erythrocytes and hemolysis. These phenomena were less pronounced if the nanosystem included the antioxidant. Therefore, magnetite nanoparticles can be obtained by electron beam technology and functionalized to form non-toxic nanosystems.</p></div>\",\"PeriodicalId\":37785,\"journal\":{\"name\":\"OpenNano\",\"volume\":\"11 \",\"pages\":\"Article 100143\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OpenNano\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352952023000221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OpenNano","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352952023000221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Cytotoxicity of magnetite nanoparticles deposited in sodium chloride matrix and their functionalized analogues in erythrocytes
The synthesis of covered nanoparticles provides new properties to the materials for biomedical applications. This fully applies to iron oxide nanoparticles. The research aim was to study features of the magnetite nanoparticles synthesized by electron beam technology as well as to investigate their functionalization and cytotoxicity. Nanoparticle characteristics were determined by standard methods. Cytotoxiciy of nanoparticles was studied using erythrocyte model. It was shown that the original magnetite nanoparticles in the sodium chloride matrix can be functionalized with polyvinylpyrrolidone and ethylmethylhydroxypyridine succinate, an antioxidant. All investigated nanoparticles were non-toxic for erythrocytes at concentrations up to 100 μg Fe/ml. At 100-200 μg Fe/ml, they increased the amount of cells expressing phosphatidylserine on the outer membrane, the count of pathological forms of erythrocytes and hemolysis. These phenomena were less pronounced if the nanosystem included the antioxidant. Therefore, magnetite nanoparticles can be obtained by electron beam technology and functionalized to form non-toxic nanosystems.
期刊介绍:
OpenNano is an internationally peer-reviewed and open access journal publishing high-quality review articles and original research papers on the burgeoning area of nanopharmaceutics and nanosized delivery systems for drugs, genes, and imaging agents. The Journal publishes basic, translational and clinical research as well as methodological papers and aims to bring together chemists, biochemists, cell biologists, material scientists, pharmaceutical scientists, pharmacologists, clinicians and all others working in this exciting and challenging area.