驾驶方式对能源消耗和二氧化碳排放的影响

Susana Carreón-Sierra, A. Salcido
{"title":"驾驶方式对能源消耗和二氧化碳排放的影响","authors":"Susana Carreón-Sierra, A. Salcido","doi":"10.17815/cd.2022.137","DOIUrl":null,"url":null,"abstract":"\n\n\nThe tractive force developed by energy consumption (EC) in a car engine produces its acceleration and sustains the motion against velocity dependent resistance forces. In internal combustion engines, fuel burning entails pollutant emissions (PE) released into the atmosphere. In vehicular traffic, EC and PE depend on the driving style. This paper assumed that the transition rules in a traffic cellular automata (TCA) represent a driving style, and its effect on EC and PE in TCA is studied. Extending empirical relationships, we proposed models to estimate EC and PE in TCA from the velocity and acceleration distributions, which we obtained by computer simulations for three well-known TCA. The Nagel-Schreckenberg (NS) and Fukui-Ishibashi (FI) models, and a variant (NS+FI) defined by combining the NS and FI rules, were considered. The FI driving style revealed EC and CO2 emission rates dependent on the stochastic delay (p) only for low vehicular densities. We also detected that the larger EC and CO2 emission rates were 45.4 kW and 26.7 g/s with no dependence on p. With NS and NS+FI driving styles, the larger energy consumption and CO2 emission rates occurred for small stochastic delays, 18.4 kW and 6.6 g/s and 61.1kW and 30.2 g/s for p = 0.2. On average, for NS, FI, and NS+FI models (p = 0.2), we obtained energy consumptions of 1.88, 2.60, and 2.76 MJ/km, fuel consumptions of 0.08, 0.12, and 0.13 L/km, and CO2 emissions of 0.158, 0.460, and 0.562 kgCO2/km. Our results agree with those (3.37 MJ/km and 0.235 kgCO2/km) of petrol combustion car engines at 10 km/L. This work may help in designing flow and driving style scenarios to optimize vehicular traffic EC and reduce PE. \n\n\n","PeriodicalId":93276,"journal":{"name":"Collective dynamics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Driving Style on Energy Consumption and CO2 Emissions\",\"authors\":\"Susana Carreón-Sierra, A. Salcido\",\"doi\":\"10.17815/cd.2022.137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\n\\nThe tractive force developed by energy consumption (EC) in a car engine produces its acceleration and sustains the motion against velocity dependent resistance forces. In internal combustion engines, fuel burning entails pollutant emissions (PE) released into the atmosphere. In vehicular traffic, EC and PE depend on the driving style. This paper assumed that the transition rules in a traffic cellular automata (TCA) represent a driving style, and its effect on EC and PE in TCA is studied. Extending empirical relationships, we proposed models to estimate EC and PE in TCA from the velocity and acceleration distributions, which we obtained by computer simulations for three well-known TCA. The Nagel-Schreckenberg (NS) and Fukui-Ishibashi (FI) models, and a variant (NS+FI) defined by combining the NS and FI rules, were considered. The FI driving style revealed EC and CO2 emission rates dependent on the stochastic delay (p) only for low vehicular densities. We also detected that the larger EC and CO2 emission rates were 45.4 kW and 26.7 g/s with no dependence on p. With NS and NS+FI driving styles, the larger energy consumption and CO2 emission rates occurred for small stochastic delays, 18.4 kW and 6.6 g/s and 61.1kW and 30.2 g/s for p = 0.2. On average, for NS, FI, and NS+FI models (p = 0.2), we obtained energy consumptions of 1.88, 2.60, and 2.76 MJ/km, fuel consumptions of 0.08, 0.12, and 0.13 L/km, and CO2 emissions of 0.158, 0.460, and 0.562 kgCO2/km. Our results agree with those (3.37 MJ/km and 0.235 kgCO2/km) of petrol combustion car engines at 10 km/L. This work may help in designing flow and driving style scenarios to optimize vehicular traffic EC and reduce PE. \\n\\n\\n\",\"PeriodicalId\":93276,\"journal\":{\"name\":\"Collective dynamics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Collective dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17815/cd.2022.137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collective dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17815/cd.2022.137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

汽车发动机中由能量消耗(EC)产生的牵引力产生加速度,并抵抗与速度相关的阻力来维持运动。在内燃机中,燃料燃烧导致污染物排放(PE)释放到大气中。在车辆交通中,EC和PE取决于驾驶风格。本文假设交通元胞自动机(TCA)中的转换规则代表一种驾驶风格,并研究了它对TCA中EC和PE的影响。扩展经验关系,我们提出了根据速度和加速度分布估计TCA中EC和PE的模型,这是我们通过对三种著名TCA的计算机模拟获得的。考虑了Nagel-Schreckenberg(NS)和Fukui-Ishibashi(FI)模型,以及通过结合NS和FI规则定义的变体(NS+FI)。FI驾驶方式显示,EC和CO2排放率仅在低车辆密度时取决于随机延迟(p)。我们还检测到,较大的EC和CO2排放率分别为45.4 kW和26.7 g/s,与p无关。对于NS和NS+FI驾驶方式,较小的随机延迟出现较大的能耗和CO2排放速率,当p=0.2时,分别为18.4 kW和6.6 g/s以及61.1 kW和30.2 g/s。平均而言,对于NS、FI和NS+FI模型(p=0.2),我们获得的能耗分别为1.88、2.60和2.76 MJ/km,燃油消耗分别为0.08、0.12和0.13 L/km,二氧化碳排放分别为0.158、0.460和0.562 kgCO2/km。我们的结果与汽油发动机在10km/h下的结果(3.37MJ/km和0.235kgCO2/km)一致。这项工作可能有助于设计流量和驾驶方式场景,以优化车辆交通EC并减少PE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of Driving Style on Energy Consumption and CO2 Emissions
The tractive force developed by energy consumption (EC) in a car engine produces its acceleration and sustains the motion against velocity dependent resistance forces. In internal combustion engines, fuel burning entails pollutant emissions (PE) released into the atmosphere. In vehicular traffic, EC and PE depend on the driving style. This paper assumed that the transition rules in a traffic cellular automata (TCA) represent a driving style, and its effect on EC and PE in TCA is studied. Extending empirical relationships, we proposed models to estimate EC and PE in TCA from the velocity and acceleration distributions, which we obtained by computer simulations for three well-known TCA. The Nagel-Schreckenberg (NS) and Fukui-Ishibashi (FI) models, and a variant (NS+FI) defined by combining the NS and FI rules, were considered. The FI driving style revealed EC and CO2 emission rates dependent on the stochastic delay (p) only for low vehicular densities. We also detected that the larger EC and CO2 emission rates were 45.4 kW and 26.7 g/s with no dependence on p. With NS and NS+FI driving styles, the larger energy consumption and CO2 emission rates occurred for small stochastic delays, 18.4 kW and 6.6 g/s and 61.1kW and 30.2 g/s for p = 0.2. On average, for NS, FI, and NS+FI models (p = 0.2), we obtained energy consumptions of 1.88, 2.60, and 2.76 MJ/km, fuel consumptions of 0.08, 0.12, and 0.13 L/km, and CO2 emissions of 0.158, 0.460, and 0.562 kgCO2/km. Our results agree with those (3.37 MJ/km and 0.235 kgCO2/km) of petrol combustion car engines at 10 km/L. This work may help in designing flow and driving style scenarios to optimize vehicular traffic EC and reduce PE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
23 weeks
期刊最新文献
Improving Pedestrian Dynamics Predictions Using Neighboring Factors Evaluation of Data Fitting Approaches for Speed/Flow Density Relationships Numerical and Theoretical Analysis of a New One-Dimensional Cellular Automaton Model for Bidirectional Flows Are Depth Field Cameras Preserving Anonymity? Pilot Study of Mental Simulation of People Movement During Evacuations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1