Moqbel Ali Moqbel Redhwan , Hariprasad M.G , Suman Samaddar , Sumaia Abdulbari Ahmed Ali Hard
{"title":"siRNA是治疗糖尿病并发症的有前途的工具","authors":"Moqbel Ali Moqbel Redhwan , Hariprasad M.G , Suman Samaddar , Sumaia Abdulbari Ahmed Ali Hard","doi":"10.1016/j.onano.2023.100174","DOIUrl":null,"url":null,"abstract":"<div><p>RNA interference (RNAi) is a naturally occurring process of gene regulation that has been harnessed to silence specific genes in various cell types, including those involved in diabetes complications. Small interfering RNA (siRNA) is an RNA molecule that activates RNAi and targets specific genes for degradation. Recent research has demonstrated that siRNA holds promise as a tool for treating diabetes complications, including diabetic neuropathy, retinopathy, and nephropathy. In preclinical studies, siRNA has been shown to effectively target genes involved in these complications, resulting in improved clinical outcomes. One potential advantage of siRNA therapy is its ability to selectively target specific genes without disrupting endogenous mRNA pathways, which reduces the risk of off-target effects. Additionally, siRNA has the potential to provide long-lasting effects with a single dose, which could result in reduced treatment frequency and improved patient compliance. While promising preclinical results have been, several challenges still need to be addressed before siRNA can be used in clinical practice. These include delivery issues, as siRNA molecules rapidly degrade in the bloodstream and cannot cross cell membranes without assistance. Despite these challenges, the potential of siRNA as a tool for treating diabetes complications is exciting, and further research is needed to determine its safety and efficacy in clinical trials. With continued investigation and refinement, siRNA has the potential to become an important therapeutic tool for the treatment of diabetes complications, improving patient outcomes and quality of life.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"13 ","pages":"Article 100174"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"siRNA a promising tool for diabetes complications\",\"authors\":\"Moqbel Ali Moqbel Redhwan , Hariprasad M.G , Suman Samaddar , Sumaia Abdulbari Ahmed Ali Hard\",\"doi\":\"10.1016/j.onano.2023.100174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>RNA interference (RNAi) is a naturally occurring process of gene regulation that has been harnessed to silence specific genes in various cell types, including those involved in diabetes complications. Small interfering RNA (siRNA) is an RNA molecule that activates RNAi and targets specific genes for degradation. Recent research has demonstrated that siRNA holds promise as a tool for treating diabetes complications, including diabetic neuropathy, retinopathy, and nephropathy. In preclinical studies, siRNA has been shown to effectively target genes involved in these complications, resulting in improved clinical outcomes. One potential advantage of siRNA therapy is its ability to selectively target specific genes without disrupting endogenous mRNA pathways, which reduces the risk of off-target effects. Additionally, siRNA has the potential to provide long-lasting effects with a single dose, which could result in reduced treatment frequency and improved patient compliance. While promising preclinical results have been, several challenges still need to be addressed before siRNA can be used in clinical practice. These include delivery issues, as siRNA molecules rapidly degrade in the bloodstream and cannot cross cell membranes without assistance. Despite these challenges, the potential of siRNA as a tool for treating diabetes complications is exciting, and further research is needed to determine its safety and efficacy in clinical trials. With continued investigation and refinement, siRNA has the potential to become an important therapeutic tool for the treatment of diabetes complications, improving patient outcomes and quality of life.</p></div>\",\"PeriodicalId\":37785,\"journal\":{\"name\":\"OpenNano\",\"volume\":\"13 \",\"pages\":\"Article 100174\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OpenNano\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352952023000531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OpenNano","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352952023000531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
RNA interference (RNAi) is a naturally occurring process of gene regulation that has been harnessed to silence specific genes in various cell types, including those involved in diabetes complications. Small interfering RNA (siRNA) is an RNA molecule that activates RNAi and targets specific genes for degradation. Recent research has demonstrated that siRNA holds promise as a tool for treating diabetes complications, including diabetic neuropathy, retinopathy, and nephropathy. In preclinical studies, siRNA has been shown to effectively target genes involved in these complications, resulting in improved clinical outcomes. One potential advantage of siRNA therapy is its ability to selectively target specific genes without disrupting endogenous mRNA pathways, which reduces the risk of off-target effects. Additionally, siRNA has the potential to provide long-lasting effects with a single dose, which could result in reduced treatment frequency and improved patient compliance. While promising preclinical results have been, several challenges still need to be addressed before siRNA can be used in clinical practice. These include delivery issues, as siRNA molecules rapidly degrade in the bloodstream and cannot cross cell membranes without assistance. Despite these challenges, the potential of siRNA as a tool for treating diabetes complications is exciting, and further research is needed to determine its safety and efficacy in clinical trials. With continued investigation and refinement, siRNA has the potential to become an important therapeutic tool for the treatment of diabetes complications, improving patient outcomes and quality of life.
期刊介绍:
OpenNano is an internationally peer-reviewed and open access journal publishing high-quality review articles and original research papers on the burgeoning area of nanopharmaceutics and nanosized delivery systems for drugs, genes, and imaging agents. The Journal publishes basic, translational and clinical research as well as methodological papers and aims to bring together chemists, biochemists, cell biologists, material scientists, pharmaceutical scientists, pharmacologists, clinicians and all others working in this exciting and challenging area.