{"title":"有限总体中均值及其函数估计量的比较","authors":"Anurag Dey, P. Chaudhuri","doi":"10.5705/ss.202022.0181","DOIUrl":null,"url":null,"abstract":"Several well known estimators of finite population mean and its functions are investigated under some standard sampling designs. Such functions of mean include the variance, the correlation coefficient and the regression coefficient in the population as special cases. We compare the performance of these estimators under different sampling designs based on their asymptotic distributions. Equivalence classes of estimators under different sampling designs are constructed so that estimators in the same class have equivalent performance in terms of asymptotic mean squared errors (MSEs). Estimators in different equivalence classes are then compared under some superpopulations satisfying linear models. It is shown that the pseudo empirical likelihood (PEML) estimator of the population mean under simple random sampling without replacement (SRSWOR) has the lowest asymptotic MSE among all the estimators under different sampling designs considered in this paper. It is also shown that for the variance, the correlation coefficient and the regression coefficient of the population, the plug-in estimators based on the PEML estimator have the lowest asymptotic MSEs among all the estimators considered in this paper under SRSWOR. On the other hand, for any high entropy $\\pi$PS (HE$\\pi$PS) sampling design, which uses the auxiliary information, the plug-in estimators of those parameters based on the H\\'ajek estimator have the lowest asymptotic MSEs among all the estimators considered in this paper.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparison of Estimators of Mean and Its Functions in Finite Populations\",\"authors\":\"Anurag Dey, P. Chaudhuri\",\"doi\":\"10.5705/ss.202022.0181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several well known estimators of finite population mean and its functions are investigated under some standard sampling designs. Such functions of mean include the variance, the correlation coefficient and the regression coefficient in the population as special cases. We compare the performance of these estimators under different sampling designs based on their asymptotic distributions. Equivalence classes of estimators under different sampling designs are constructed so that estimators in the same class have equivalent performance in terms of asymptotic mean squared errors (MSEs). Estimators in different equivalence classes are then compared under some superpopulations satisfying linear models. It is shown that the pseudo empirical likelihood (PEML) estimator of the population mean under simple random sampling without replacement (SRSWOR) has the lowest asymptotic MSE among all the estimators under different sampling designs considered in this paper. It is also shown that for the variance, the correlation coefficient and the regression coefficient of the population, the plug-in estimators based on the PEML estimator have the lowest asymptotic MSEs among all the estimators considered in this paper under SRSWOR. On the other hand, for any high entropy $\\\\pi$PS (HE$\\\\pi$PS) sampling design, which uses the auxiliary information, the plug-in estimators of those parameters based on the H\\\\'ajek estimator have the lowest asymptotic MSEs among all the estimators considered in this paper.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5705/ss.202022.0181\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5705/ss.202022.0181","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Comparison of Estimators of Mean and Its Functions in Finite Populations
Several well known estimators of finite population mean and its functions are investigated under some standard sampling designs. Such functions of mean include the variance, the correlation coefficient and the regression coefficient in the population as special cases. We compare the performance of these estimators under different sampling designs based on their asymptotic distributions. Equivalence classes of estimators under different sampling designs are constructed so that estimators in the same class have equivalent performance in terms of asymptotic mean squared errors (MSEs). Estimators in different equivalence classes are then compared under some superpopulations satisfying linear models. It is shown that the pseudo empirical likelihood (PEML) estimator of the population mean under simple random sampling without replacement (SRSWOR) has the lowest asymptotic MSE among all the estimators under different sampling designs considered in this paper. It is also shown that for the variance, the correlation coefficient and the regression coefficient of the population, the plug-in estimators based on the PEML estimator have the lowest asymptotic MSEs among all the estimators considered in this paper under SRSWOR. On the other hand, for any high entropy $\pi$PS (HE$\pi$PS) sampling design, which uses the auxiliary information, the plug-in estimators of those parameters based on the H\'ajek estimator have the lowest asymptotic MSEs among all the estimators considered in this paper.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.