Seon-Ok Hong, Jinwon Kim, Young-Hwa Byun, Jinkyu Hong, Je-Woo Hong, Keunmin Lee, Young-San Park, Sang-Sam Lee, Yeon-Hee Kim
{"title":"首尔市区地表大气界面CO_ 2通量的城市内部变化","authors":"Seon-Ok Hong, Jinwon Kim, Young-Hwa Byun, Jinkyu Hong, Je-Woo Hong, Keunmin Lee, Young-San Park, Sang-Sam Lee, Yeon-Hee Kim","doi":"10.1007/s13143-023-00324-6","DOIUrl":null,"url":null,"abstract":"<div><p>Severe spatiotemporal heterogeneity of emissions sources and limited measurement networks have been hampering the monitoring and understanding of CO<sub>2</sub> fluxes in large cities, a great concern in climate research as big cities are among the major sources of anthropogenic CO<sub>2</sub> in the climate system. To understand the CO<sub>2</sub> fluxes in Seoul, Korea, CO<sub>2</sub> fluxes at eight surface energy balance sites, six urban (vegetation-area fraction < 15%) and two suburban (vegetation-area fraction > 60%), for 2017–2018 are analyzed and attributed to the local land-use and business types. The analyses show that the CO<sub>2</sub> flux variations at the suburban sites are mainly driven by vegetation and that the CO<sub>2</sub> flux differences between the urban and suburban sites originate from the differences in the vegetation-area fraction and anthropogenic CO<sub>2</sub> emissions. For the CO<sub>2</sub> fluxes at the urban sites; (1) vehicle traffic (traffic) and heating-fuel consumption (heating) contribute > 80% to the total, (2) vegetation effects are minimal, (3) the seasonal cycle is driven mainly by heating, (4) the contribution of heating is positively related to the building-area fraction, (5) the annual total is positively (negatively) correlated with the commercial-area (residential-area) fraction, and (6) the traffic at the commercial sites depend further on the main business types to induce distinct CO<sub>2</sub> flux weekly cycles. This study shows that understanding and estimation of CO2 fluxes in large urban areas require careful site selections and analyses based on detailed consideration of the land-use and business types refined beyond the single representative land-use type widely-used in contemporary studies.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"59 4","pages":"417 - 431"},"PeriodicalIF":2.2000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13143-023-00324-6.pdf","citationCount":"1","resultStr":"{\"title\":\"Intra-urban Variations of the CO2 Fluxes at the Surface-Atmosphere Interface in the Seoul Metropolitan Area\",\"authors\":\"Seon-Ok Hong, Jinwon Kim, Young-Hwa Byun, Jinkyu Hong, Je-Woo Hong, Keunmin Lee, Young-San Park, Sang-Sam Lee, Yeon-Hee Kim\",\"doi\":\"10.1007/s13143-023-00324-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Severe spatiotemporal heterogeneity of emissions sources and limited measurement networks have been hampering the monitoring and understanding of CO<sub>2</sub> fluxes in large cities, a great concern in climate research as big cities are among the major sources of anthropogenic CO<sub>2</sub> in the climate system. To understand the CO<sub>2</sub> fluxes in Seoul, Korea, CO<sub>2</sub> fluxes at eight surface energy balance sites, six urban (vegetation-area fraction < 15%) and two suburban (vegetation-area fraction > 60%), for 2017–2018 are analyzed and attributed to the local land-use and business types. The analyses show that the CO<sub>2</sub> flux variations at the suburban sites are mainly driven by vegetation and that the CO<sub>2</sub> flux differences between the urban and suburban sites originate from the differences in the vegetation-area fraction and anthropogenic CO<sub>2</sub> emissions. For the CO<sub>2</sub> fluxes at the urban sites; (1) vehicle traffic (traffic) and heating-fuel consumption (heating) contribute > 80% to the total, (2) vegetation effects are minimal, (3) the seasonal cycle is driven mainly by heating, (4) the contribution of heating is positively related to the building-area fraction, (5) the annual total is positively (negatively) correlated with the commercial-area (residential-area) fraction, and (6) the traffic at the commercial sites depend further on the main business types to induce distinct CO<sub>2</sub> flux weekly cycles. This study shows that understanding and estimation of CO2 fluxes in large urban areas require careful site selections and analyses based on detailed consideration of the land-use and business types refined beyond the single representative land-use type widely-used in contemporary studies.</p></div>\",\"PeriodicalId\":8556,\"journal\":{\"name\":\"Asia-Pacific Journal of Atmospheric Sciences\",\"volume\":\"59 4\",\"pages\":\"417 - 431\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13143-023-00324-6.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Journal of Atmospheric Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13143-023-00324-6\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s13143-023-00324-6","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Intra-urban Variations of the CO2 Fluxes at the Surface-Atmosphere Interface in the Seoul Metropolitan Area
Severe spatiotemporal heterogeneity of emissions sources and limited measurement networks have been hampering the monitoring and understanding of CO2 fluxes in large cities, a great concern in climate research as big cities are among the major sources of anthropogenic CO2 in the climate system. To understand the CO2 fluxes in Seoul, Korea, CO2 fluxes at eight surface energy balance sites, six urban (vegetation-area fraction < 15%) and two suburban (vegetation-area fraction > 60%), for 2017–2018 are analyzed and attributed to the local land-use and business types. The analyses show that the CO2 flux variations at the suburban sites are mainly driven by vegetation and that the CO2 flux differences between the urban and suburban sites originate from the differences in the vegetation-area fraction and anthropogenic CO2 emissions. For the CO2 fluxes at the urban sites; (1) vehicle traffic (traffic) and heating-fuel consumption (heating) contribute > 80% to the total, (2) vegetation effects are minimal, (3) the seasonal cycle is driven mainly by heating, (4) the contribution of heating is positively related to the building-area fraction, (5) the annual total is positively (negatively) correlated with the commercial-area (residential-area) fraction, and (6) the traffic at the commercial sites depend further on the main business types to induce distinct CO2 flux weekly cycles. This study shows that understanding and estimation of CO2 fluxes in large urban areas require careful site selections and analyses based on detailed consideration of the land-use and business types refined beyond the single representative land-use type widely-used in contemporary studies.
期刊介绍:
The Asia-Pacific Journal of Atmospheric Sciences (APJAS) is an international journal of the Korean Meteorological Society (KMS), published fully in English. It has started from 2008 by succeeding the KMS'' former journal, the Journal of the Korean Meteorological Society (JKMS), which published a total of 47 volumes as of 2011, in its time-honored tradition since 1965. Since 2008, the APJAS is included in the journal list of Thomson Reuters’ SCIE (Science Citation Index Expanded) and also in SCOPUS, the Elsevier Bibliographic Database, indicating the increased awareness and quality of the journal.