行人动力学研究中的统计模型拟合与模型选择

N. Bode, E. Ronchi
{"title":"行人动力学研究中的统计模型拟合与模型选择","authors":"N. Bode, E. Ronchi","doi":"10.17815/CD.2019.20","DOIUrl":null,"url":null,"abstract":"Pedestrian dynamics is concerned with understanding the movement patterns that arise in places where more than one person walks. Relating theoretical models to data is a crucial goal of research in this field. Statistical model fitting and model selection are a suitable approach to this problem and here we review the concepts and literature related to this methodology in the context of pedestrian dynamics. The central tenet of statistical modelling is to describe the relationship between different variables by using probability distributions. Rather than providing a critique of existing methodology or a \"how to\" guide for such an established research technique, our review aims to highlight broad concepts, different uses, best practices, challenges and opportunities with a focussed view on theoretical models for pedestrian behaviour. This contribution is aimed at researchers in pedestrian dynamics who want to carefully analyse data, relate a theoretical model to data, or compare the relative quality of several theoretical models. The survey of the literature we present provides many methodological starting points and we suggest that the particular challenges to statistical modelling in pedestrian dynamics make this an inherently interesting field of research.","PeriodicalId":93276,"journal":{"name":"Collective dynamics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Statistical Model Fitting and Model Selection in Pedestrian Dynamics Research\",\"authors\":\"N. Bode, E. Ronchi\",\"doi\":\"10.17815/CD.2019.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pedestrian dynamics is concerned with understanding the movement patterns that arise in places where more than one person walks. Relating theoretical models to data is a crucial goal of research in this field. Statistical model fitting and model selection are a suitable approach to this problem and here we review the concepts and literature related to this methodology in the context of pedestrian dynamics. The central tenet of statistical modelling is to describe the relationship between different variables by using probability distributions. Rather than providing a critique of existing methodology or a \\\"how to\\\" guide for such an established research technique, our review aims to highlight broad concepts, different uses, best practices, challenges and opportunities with a focussed view on theoretical models for pedestrian behaviour. This contribution is aimed at researchers in pedestrian dynamics who want to carefully analyse data, relate a theoretical model to data, or compare the relative quality of several theoretical models. The survey of the literature we present provides many methodological starting points and we suggest that the particular challenges to statistical modelling in pedestrian dynamics make this an inherently interesting field of research.\",\"PeriodicalId\":93276,\"journal\":{\"name\":\"Collective dynamics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Collective dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17815/CD.2019.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collective dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17815/CD.2019.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

行人动力学关注的是了解在多人行走的地方出现的运动模式。将理论模型与数据联系起来是该领域研究的一个重要目标。统计模型拟合和模型选择是解决这一问题的合适方法,在此我们回顾了行人动力学背景下与该方法相关的概念和文献。统计建模的核心原则是通过使用概率分布来描述不同变量之间的关系。我们的综述旨在强调广泛的概念、不同的用途、最佳实践、挑战和机遇,重点关注行人行为的理论模型,而不是对现有方法进行批判或为这种既定的研究技术提供“如何”指南。这篇文章针对的是行人动力学研究人员,他们希望仔细分析数据,将理论模型与数据联系起来,或比较几个理论模型的相对质量。我们对文献的调查提供了许多方法学的起点,我们认为行人动力学统计建模的特殊挑战使这成为一个固有的有趣研究领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Statistical Model Fitting and Model Selection in Pedestrian Dynamics Research
Pedestrian dynamics is concerned with understanding the movement patterns that arise in places where more than one person walks. Relating theoretical models to data is a crucial goal of research in this field. Statistical model fitting and model selection are a suitable approach to this problem and here we review the concepts and literature related to this methodology in the context of pedestrian dynamics. The central tenet of statistical modelling is to describe the relationship between different variables by using probability distributions. Rather than providing a critique of existing methodology or a "how to" guide for such an established research technique, our review aims to highlight broad concepts, different uses, best practices, challenges and opportunities with a focussed view on theoretical models for pedestrian behaviour. This contribution is aimed at researchers in pedestrian dynamics who want to carefully analyse data, relate a theoretical model to data, or compare the relative quality of several theoretical models. The survey of the literature we present provides many methodological starting points and we suggest that the particular challenges to statistical modelling in pedestrian dynamics make this an inherently interesting field of research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
23 weeks
期刊最新文献
Improving Pedestrian Dynamics Predictions Using Neighboring Factors Evaluation of Data Fitting Approaches for Speed/Flow Density Relationships Numerical and Theoretical Analysis of a New One-Dimensional Cellular Automaton Model for Bidirectional Flows Are Depth Field Cameras Preserving Anonymity? Pilot Study of Mental Simulation of People Movement During Evacuations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1