Taís N. Yamasaki , Christopher Walker , Johannes G. Janzen , Heidi Nepf
{"title":"跨越河道宽度、串联布置的浮式处理湿地的流量分布和质量去除","authors":"Taís N. Yamasaki , Christopher Walker , Johannes G. Janzen , Heidi Nepf","doi":"10.1016/j.jher.2022.07.001","DOIUrl":null,"url":null,"abstract":"<div><p>Floating treatment wetlands (FTWs) use plants’ roots for water quality improvement. The plants are supported by a buoyant structure deployed at the water surface. The roots form a porous zone beneath the structure and remove pollutants carried in suspension through filtering, absorption and uptake. This paper used CFD simulation to model FTWs arranged in series and spanning the channel width and to study the effects of root length and spacing between FTWs on flow distribution and mass removal. The root zone was modelled as a porous media, and removal was computed using first-order decay, for which a range of removal constants was tested. Longer roots increased the reactive volume of the root zone, which increased the fraction of pollutant inflow entering the FTWs. Increasing the distance between FTWs allowed greater mixing between water that went through and beneath the upstream FTW. This increased the concentration entering each FTW, which enhanced mass removal per FTW. However, a larger distance between FTWs reduced the number of FTWs in the channel, reducing the reactive volume. In the tradeoff between mixing and reactive volume, the reactive volume was more important, such that total removal in the channel increased with longer roots and more units of FTW (shorter gap distance). However, removing the gap entirely was detrimental, as FTWs in series removed more mass than a continuous FTW of same volume. This study points to two design recommendations for FTWs in series. First, if resources for building FTWs are not limiting, but the channel length is, it is preferable to prioritize higher reactive volume (shorter gap distance) to achieve maximum removal per channel length. Second, if resources for FTWs are limiting, but channel length is not, it is better to place the FTWs with a longer gap distance, preferably along enough to allow mixing over the full depth between FTWs, as this will achieve maximum removal per FTW.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":"44 ","pages":"Pages 1-11"},"PeriodicalIF":2.4000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Flow distribution and mass removal in floating treatment wetlands arranged in series and spanning the channel width\",\"authors\":\"Taís N. Yamasaki , Christopher Walker , Johannes G. Janzen , Heidi Nepf\",\"doi\":\"10.1016/j.jher.2022.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Floating treatment wetlands (FTWs) use plants’ roots for water quality improvement. The plants are supported by a buoyant structure deployed at the water surface. The roots form a porous zone beneath the structure and remove pollutants carried in suspension through filtering, absorption and uptake. This paper used CFD simulation to model FTWs arranged in series and spanning the channel width and to study the effects of root length and spacing between FTWs on flow distribution and mass removal. The root zone was modelled as a porous media, and removal was computed using first-order decay, for which a range of removal constants was tested. Longer roots increased the reactive volume of the root zone, which increased the fraction of pollutant inflow entering the FTWs. Increasing the distance between FTWs allowed greater mixing between water that went through and beneath the upstream FTW. This increased the concentration entering each FTW, which enhanced mass removal per FTW. However, a larger distance between FTWs reduced the number of FTWs in the channel, reducing the reactive volume. In the tradeoff between mixing and reactive volume, the reactive volume was more important, such that total removal in the channel increased with longer roots and more units of FTW (shorter gap distance). However, removing the gap entirely was detrimental, as FTWs in series removed more mass than a continuous FTW of same volume. This study points to two design recommendations for FTWs in series. First, if resources for building FTWs are not limiting, but the channel length is, it is preferable to prioritize higher reactive volume (shorter gap distance) to achieve maximum removal per channel length. Second, if resources for FTWs are limiting, but channel length is not, it is better to place the FTWs with a longer gap distance, preferably along enough to allow mixing over the full depth between FTWs, as this will achieve maximum removal per FTW.</p></div>\",\"PeriodicalId\":49303,\"journal\":{\"name\":\"Journal of Hydro-environment Research\",\"volume\":\"44 \",\"pages\":\"Pages 1-11\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydro-environment Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570644322000338\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydro-environment Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570644322000338","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Flow distribution and mass removal in floating treatment wetlands arranged in series and spanning the channel width
Floating treatment wetlands (FTWs) use plants’ roots for water quality improvement. The plants are supported by a buoyant structure deployed at the water surface. The roots form a porous zone beneath the structure and remove pollutants carried in suspension through filtering, absorption and uptake. This paper used CFD simulation to model FTWs arranged in series and spanning the channel width and to study the effects of root length and spacing between FTWs on flow distribution and mass removal. The root zone was modelled as a porous media, and removal was computed using first-order decay, for which a range of removal constants was tested. Longer roots increased the reactive volume of the root zone, which increased the fraction of pollutant inflow entering the FTWs. Increasing the distance between FTWs allowed greater mixing between water that went through and beneath the upstream FTW. This increased the concentration entering each FTW, which enhanced mass removal per FTW. However, a larger distance between FTWs reduced the number of FTWs in the channel, reducing the reactive volume. In the tradeoff between mixing and reactive volume, the reactive volume was more important, such that total removal in the channel increased with longer roots and more units of FTW (shorter gap distance). However, removing the gap entirely was detrimental, as FTWs in series removed more mass than a continuous FTW of same volume. This study points to two design recommendations for FTWs in series. First, if resources for building FTWs are not limiting, but the channel length is, it is preferable to prioritize higher reactive volume (shorter gap distance) to achieve maximum removal per channel length. Second, if resources for FTWs are limiting, but channel length is not, it is better to place the FTWs with a longer gap distance, preferably along enough to allow mixing over the full depth between FTWs, as this will achieve maximum removal per FTW.
期刊介绍:
The journal aims to provide an international platform for the dissemination of research and engineering applications related to water and hydraulic problems in the Asia-Pacific region. The journal provides a wide distribution at affordable subscription rate, as well as a rapid reviewing and publication time. The journal particularly encourages papers from young researchers.
Papers that require extensive language editing, qualify for editorial assistance with American Journal Experts, a Language Editing Company that Elsevier recommends. Authors submitting to this journal are entitled to a 10% discount.