一种轻量级、安全的智能农业物联网认证模型

IF 3.3 2区 农林科学 Q1 AGRONOMY Agronomy-Basel Pub Date : 2023-08-28 DOI:10.3390/agronomy13092257
Fei Pan, Boda Zhang, Xiaoyu Zhao, Luyu Shuai, Peng Chen, Xuliang Duan
{"title":"一种轻量级、安全的智能农业物联网认证模型","authors":"Fei Pan, Boda Zhang, Xiaoyu Zhao, Luyu Shuai, Peng Chen, Xuliang Duan","doi":"10.3390/agronomy13092257","DOIUrl":null,"url":null,"abstract":"The advancement of smart agriculture, with information technology serving as a pivotal enabling factor, plays a crucial role in achieving food security, optimizing production efficiency, and preserving the environment. Simultaneously, wireless communication technology holds a critical function within the context of applying the Internet of Things in agriculture. In this research endeavor, we present an algorithm for lightweight channel authentication based on frequency-domain feature extraction. This algorithm aims to distinguish between authentic transmitters and unauthorized ones in the wireless communication context of a representative agricultural setting. To accomplish this, we compiled a dataset comprising legitimate and illegitimate communication channels observed in both indoor and outdoor scenarios, which are typical in the context of smart agriculture. Leveraging its exceptional perceptual capabilities and advantages in parallel computing, the Transformer has injected fresh vitality into the realm of signal processing. Consequently, we opted for the lightweight MobileViT as our foundational model and designed a frequency-domain feature extraction module to augment MobileViT’s capabilities in signal processing. During the validation phase, we conducted a side-by-side comparison with currently outstanding ViT models in terms of convergence speed, precision, and performance parameters. Our model emerged as the frontrunner across all aspects, with FDFE-MobileViT achieving precision, recall, and F-score rates of 96.6%, 95.6%, and 96.1%, respectively. Additionally, the model maintains a compact size of 4.04 MB. Through comprehensive experiments, our proposed method was rigorously verified as a lighter, more efficient, and more accurate solution.","PeriodicalId":56066,"journal":{"name":"Agronomy-Basel","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Lightweight, Secure Authentication Model for the Smart Agricultural Internet of Things\",\"authors\":\"Fei Pan, Boda Zhang, Xiaoyu Zhao, Luyu Shuai, Peng Chen, Xuliang Duan\",\"doi\":\"10.3390/agronomy13092257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advancement of smart agriculture, with information technology serving as a pivotal enabling factor, plays a crucial role in achieving food security, optimizing production efficiency, and preserving the environment. Simultaneously, wireless communication technology holds a critical function within the context of applying the Internet of Things in agriculture. In this research endeavor, we present an algorithm for lightweight channel authentication based on frequency-domain feature extraction. This algorithm aims to distinguish between authentic transmitters and unauthorized ones in the wireless communication context of a representative agricultural setting. To accomplish this, we compiled a dataset comprising legitimate and illegitimate communication channels observed in both indoor and outdoor scenarios, which are typical in the context of smart agriculture. Leveraging its exceptional perceptual capabilities and advantages in parallel computing, the Transformer has injected fresh vitality into the realm of signal processing. Consequently, we opted for the lightweight MobileViT as our foundational model and designed a frequency-domain feature extraction module to augment MobileViT’s capabilities in signal processing. During the validation phase, we conducted a side-by-side comparison with currently outstanding ViT models in terms of convergence speed, precision, and performance parameters. Our model emerged as the frontrunner across all aspects, with FDFE-MobileViT achieving precision, recall, and F-score rates of 96.6%, 95.6%, and 96.1%, respectively. Additionally, the model maintains a compact size of 4.04 MB. Through comprehensive experiments, our proposed method was rigorously verified as a lighter, more efficient, and more accurate solution.\",\"PeriodicalId\":56066,\"journal\":{\"name\":\"Agronomy-Basel\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agronomy-Basel\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/agronomy13092257\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy-Basel","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/agronomy13092257","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

以信息技术为关键赋能因素的智慧农业的发展,在实现粮食安全、优化生产效率和保护环境方面发挥着至关重要的作用。同时,无线通信技术在农业物联网应用的背景下发挥着关键作用。在本研究中,我们提出了一种基于频域特征提取的轻量级信道认证算法。该算法旨在区分具有代表性的农业设置无线通信环境中的真实发射机和未经授权的发射机。为了实现这一目标,我们编制了一个数据集,其中包括在室内和室外场景中观察到的合法和非法通信渠道,这在智能农业背景下是典型的。利用其卓越的感知能力和并行计算的优势,Transformer为信号处理领域注入了新的活力。因此,我们选择了轻量级的MobileViT作为我们的基础模型,并设计了一个频域特征提取模块来增强MobileViT在信号处理方面的能力。在验证阶段,我们与当前优秀的ViT模型在收敛速度、精度和性能参数方面进行了并排比较。我们的模型在所有方面都处于领先地位,FDFE-MobileViT的准确率、召回率和f得分分别达到96.6%、95.6%和96.1%。此外,模型保持了4.04 MB的紧凑大小。通过全面的实验,我们提出的方法被严格验证为更轻,更高效,更准确的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Lightweight, Secure Authentication Model for the Smart Agricultural Internet of Things
The advancement of smart agriculture, with information technology serving as a pivotal enabling factor, plays a crucial role in achieving food security, optimizing production efficiency, and preserving the environment. Simultaneously, wireless communication technology holds a critical function within the context of applying the Internet of Things in agriculture. In this research endeavor, we present an algorithm for lightweight channel authentication based on frequency-domain feature extraction. This algorithm aims to distinguish between authentic transmitters and unauthorized ones in the wireless communication context of a representative agricultural setting. To accomplish this, we compiled a dataset comprising legitimate and illegitimate communication channels observed in both indoor and outdoor scenarios, which are typical in the context of smart agriculture. Leveraging its exceptional perceptual capabilities and advantages in parallel computing, the Transformer has injected fresh vitality into the realm of signal processing. Consequently, we opted for the lightweight MobileViT as our foundational model and designed a frequency-domain feature extraction module to augment MobileViT’s capabilities in signal processing. During the validation phase, we conducted a side-by-side comparison with currently outstanding ViT models in terms of convergence speed, precision, and performance parameters. Our model emerged as the frontrunner across all aspects, with FDFE-MobileViT achieving precision, recall, and F-score rates of 96.6%, 95.6%, and 96.1%, respectively. Additionally, the model maintains a compact size of 4.04 MB. Through comprehensive experiments, our proposed method was rigorously verified as a lighter, more efficient, and more accurate solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Agronomy-Basel
Agronomy-Basel Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
6.20
自引率
13.50%
发文量
2665
审稿时长
20.32 days
期刊介绍: Agronomy (ISSN 2073-4395) is an international and cross-disciplinary scholarly journal on agronomy and agroecology. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
期刊最新文献
Straw Mulching Combined with Phosphorus Fertilizer Increases Fertile Florets of Wheat by Enhancing Leaf Photosynthesis and Assimilate Utilization Design and Parameter Optimization of a Negative-Pressure Peanut Fruit-Soil Separating Device Tomato Recognition and Localization Method Based on Improved YOLOv5n-seg Model and Binocular Stereo Vision Compost Tea as Organic Fertilizer and Plant Disease Control: Bibliometric Analysis Silver and Hematite Nanoparticles Had a Limited Effect on the Bacterial Community Structure in Soil Cultivated with Phaseolus vulgaris L.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1