聚ε-己内酯纳米纤维支架的制备及其在伤口愈合中的应用

Q2 Pharmacology, Toxicology and Pharmaceutics OpenNano Pub Date : 2023-10-12 DOI:10.1016/j.onano.2023.100189
Deiviga Murugan , Ankitha Suresh , Goutam Thakur , Bhisham Narayan Singh
{"title":"聚ε-己内酯纳米纤维支架的制备及其在伤口愈合中的应用","authors":"Deiviga Murugan ,&nbsp;Ankitha Suresh ,&nbsp;Goutam Thakur ,&nbsp;Bhisham Narayan Singh","doi":"10.1016/j.onano.2023.100189","DOIUrl":null,"url":null,"abstract":"<div><p>Traditional wound healing substitutes loaded with bioactive molecules such as drugs, growth factors, and so on have been extensively researched in order to promote better wound healing and restore normal tissue function. The use of nanofibrous scaffolds has enhanced the biomaterial performance, thereby offering a promising solution as wound dressings in the field of skin tissue engineering. In the present study, the homoeopathic mother tincture extract of <em>Syzygium cumini</em> incorporated in poly(ε-caprolactone) nanofibrous scaffolds were fabricated in the concentration range of 5 %–20 % (w/w) and its various physicochemical and biological properties were evaluated. The fabricated nanofibers structurally mimicked the extracellular matrix, with enhanced hydrophilicity for better cellular attachment and proliferation. These scaffolds also showed anti-biofilm activity against <em>P. aeruginosa</em> and <em>S. aureus</em> and exhibited superior anti-oxidant activity. Furthermore, the extract incorporation was observed to be beneficial in cell adhesion, viability, growth and proliferation. This novel poly(ε-caprolactone) nanofibrous scaffold loaded with homoeopathic mother tincture  extract of <em>Syzygium cumini</em> might be a suitable biomaterial for clinical management of wounds and reconstruction of damaged/diseased skin tissues.</p></div>","PeriodicalId":37785,"journal":{"name":"OpenNano","volume":"14 ","pages":"Article 100189"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication and evaluation of poly(ε-caprolactone) based nanofibrous scaffolds loaded with homoeopathic mother tincture of Syzygium cumini for wound healing applications\",\"authors\":\"Deiviga Murugan ,&nbsp;Ankitha Suresh ,&nbsp;Goutam Thakur ,&nbsp;Bhisham Narayan Singh\",\"doi\":\"10.1016/j.onano.2023.100189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Traditional wound healing substitutes loaded with bioactive molecules such as drugs, growth factors, and so on have been extensively researched in order to promote better wound healing and restore normal tissue function. The use of nanofibrous scaffolds has enhanced the biomaterial performance, thereby offering a promising solution as wound dressings in the field of skin tissue engineering. In the present study, the homoeopathic mother tincture extract of <em>Syzygium cumini</em> incorporated in poly(ε-caprolactone) nanofibrous scaffolds were fabricated in the concentration range of 5 %–20 % (w/w) and its various physicochemical and biological properties were evaluated. The fabricated nanofibers structurally mimicked the extracellular matrix, with enhanced hydrophilicity for better cellular attachment and proliferation. These scaffolds also showed anti-biofilm activity against <em>P. aeruginosa</em> and <em>S. aureus</em> and exhibited superior anti-oxidant activity. Furthermore, the extract incorporation was observed to be beneficial in cell adhesion, viability, growth and proliferation. This novel poly(ε-caprolactone) nanofibrous scaffold loaded with homoeopathic mother tincture  extract of <em>Syzygium cumini</em> might be a suitable biomaterial for clinical management of wounds and reconstruction of damaged/diseased skin tissues.</p></div>\",\"PeriodicalId\":37785,\"journal\":{\"name\":\"OpenNano\",\"volume\":\"14 \",\"pages\":\"Article 100189\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OpenNano\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352952023000683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OpenNano","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352952023000683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

传统的含有药物、生长因子等生物活性分子的伤口愈合替代品已被广泛研究,以促进更好的伤口愈合和恢复正常组织功能。纳米纤维支架的使用增强了生物材料的性能,从而在皮肤组织工程领域提供了一种很有前途的伤口敷料解决方案。在本研究中,在5%-20%(w/w)的浓度范围内,制备了掺入聚(ε-己内酯)纳米纤维支架的孜然同源性母酊提取物,并对其各种理化和生物学特性进行了评价。所制备的纳米纤维在结构上模拟了细胞外基质,具有增强的亲水性,以更好地附着和增殖细胞。这些支架还表现出对铜绿假单胞菌和金黄色葡萄球菌的抗生物膜活性,并表现出优异的抗氧化活性。此外,观察到提取物掺入对细胞粘附、活力、生长和增殖有益。这种新型的聚(ε-己内酯)纳米纤维支架负载了Syzygium cumini的顺势疗法母酊提取物,可能是一种适合临床治疗伤口和重建受损/患病皮肤组织的生物材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fabrication and evaluation of poly(ε-caprolactone) based nanofibrous scaffolds loaded with homoeopathic mother tincture of Syzygium cumini for wound healing applications

Traditional wound healing substitutes loaded with bioactive molecules such as drugs, growth factors, and so on have been extensively researched in order to promote better wound healing and restore normal tissue function. The use of nanofibrous scaffolds has enhanced the biomaterial performance, thereby offering a promising solution as wound dressings in the field of skin tissue engineering. In the present study, the homoeopathic mother tincture extract of Syzygium cumini incorporated in poly(ε-caprolactone) nanofibrous scaffolds were fabricated in the concentration range of 5 %–20 % (w/w) and its various physicochemical and biological properties were evaluated. The fabricated nanofibers structurally mimicked the extracellular matrix, with enhanced hydrophilicity for better cellular attachment and proliferation. These scaffolds also showed anti-biofilm activity against P. aeruginosa and S. aureus and exhibited superior anti-oxidant activity. Furthermore, the extract incorporation was observed to be beneficial in cell adhesion, viability, growth and proliferation. This novel poly(ε-caprolactone) nanofibrous scaffold loaded with homoeopathic mother tincture  extract of Syzygium cumini might be a suitable biomaterial for clinical management of wounds and reconstruction of damaged/diseased skin tissues.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
OpenNano
OpenNano Medicine-Pharmacology (medical)
CiteScore
4.10
自引率
0.00%
发文量
63
审稿时长
50 days
期刊介绍: OpenNano is an internationally peer-reviewed and open access journal publishing high-quality review articles and original research papers on the burgeoning area of nanopharmaceutics and nanosized delivery systems for drugs, genes, and imaging agents. The Journal publishes basic, translational and clinical research as well as methodological papers and aims to bring together chemists, biochemists, cell biologists, material scientists, pharmaceutical scientists, pharmacologists, clinicians and all others working in this exciting and challenging area.
期刊最新文献
Fundamentals behind the success of nanotechnology in cancer treatment and diagnosis Cellular viability in an in vitro model of human ventricular cardiomyocytes (RL-14) exposed to gold nanoparticles biosynthesized using silk fibroin from silk fibrous waste Fabrication of pyrroloquinoline quinone-loaded small unilamellar vesicles through various downsizing techniques for biomedical applications A recent advances in antimicrobial activity of green synthesized selenium nanoparticle The effect of coating chitosan from cuttlefish bone (Sepia Sp.) on the surface of orthodontic mini-screw
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1