Yazhou Yao, Wenguan Wang, Qiang Wu, Dongfang Liu, Jin Zheng
{"title":"客座编辑:从计算机视觉任务的有限注释中学习","authors":"Yazhou Yao, Wenguan Wang, Qiang Wu, Dongfang Liu, Jin Zheng","doi":"10.1049/cvi2.12229","DOIUrl":null,"url":null,"abstract":"<p>The past decade has witnessed remarkable achievements in computer vision, owing to the fast development of deep learning. With the advancement of computing power and deep learning algorithms, we can process and apply millions or even hundreds of millions of large-scale data to train robust and advanced deep learning models. In spite of the impressive success, current deep learning methods tend to rely on massive annotated training data and lack the capability of learning from limited exemplars.</p><p>However, constructing a million-scale annotated dataset like ImageNet is time-consuming, labour-intensive and even infeasible in many applications. In certain fields, very limited annotated examples can be gathered due to various reasons such as privacy or ethical issues. Consequently, one of the pressing challenges in computer vision is to develop approaches that are capable of learning from limited annotated data. The purpose of this Special Issue is to collect high-quality articles on learning from limited annotations for computer vision tasks (e.g. image classification, object detection, semantic segmentation, instance segmentation and many others), publish new ideas, theories, solutions and insights on this topic and showcase their applications.</p><p>In this Special Issue we received 29 papers, all of which underwent peer review. Of the 29 originally submitted papers, 9 have been accepted.</p><p>The nine accepted papers can be clustered into two main categories: theoretical and applications. The papers that fall into the first category are by Liu et al., Li et al. and He et al. The second category of papers offers a direct solution to various computer vision tasks. These papers are by Ma et al., Wu et al., Rao et al., Sun et al., Hou et al. and Gong et al. A brief presentation of each of the papers in this Special Issue follows.</p><p>All of the papers selected for this Special Issue show that the field of learning from limited annotations for computer vision tasks is steadily moving forward. The possibility of a weakly supervised learning paradigm will remain a source of inspiration for new techniques in the years to come.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"17 5","pages":"509-512"},"PeriodicalIF":1.5000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12229","citationCount":"0","resultStr":"{\"title\":\"Guest Editorial: Learning from limited annotations for computer vision tasks\",\"authors\":\"Yazhou Yao, Wenguan Wang, Qiang Wu, Dongfang Liu, Jin Zheng\",\"doi\":\"10.1049/cvi2.12229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The past decade has witnessed remarkable achievements in computer vision, owing to the fast development of deep learning. With the advancement of computing power and deep learning algorithms, we can process and apply millions or even hundreds of millions of large-scale data to train robust and advanced deep learning models. In spite of the impressive success, current deep learning methods tend to rely on massive annotated training data and lack the capability of learning from limited exemplars.</p><p>However, constructing a million-scale annotated dataset like ImageNet is time-consuming, labour-intensive and even infeasible in many applications. In certain fields, very limited annotated examples can be gathered due to various reasons such as privacy or ethical issues. Consequently, one of the pressing challenges in computer vision is to develop approaches that are capable of learning from limited annotated data. The purpose of this Special Issue is to collect high-quality articles on learning from limited annotations for computer vision tasks (e.g. image classification, object detection, semantic segmentation, instance segmentation and many others), publish new ideas, theories, solutions and insights on this topic and showcase their applications.</p><p>In this Special Issue we received 29 papers, all of which underwent peer review. Of the 29 originally submitted papers, 9 have been accepted.</p><p>The nine accepted papers can be clustered into two main categories: theoretical and applications. The papers that fall into the first category are by Liu et al., Li et al. and He et al. The second category of papers offers a direct solution to various computer vision tasks. These papers are by Ma et al., Wu et al., Rao et al., Sun et al., Hou et al. and Gong et al. A brief presentation of each of the papers in this Special Issue follows.</p><p>All of the papers selected for this Special Issue show that the field of learning from limited annotations for computer vision tasks is steadily moving forward. The possibility of a weakly supervised learning paradigm will remain a source of inspiration for new techniques in the years to come.</p>\",\"PeriodicalId\":56304,\"journal\":{\"name\":\"IET Computer Vision\",\"volume\":\"17 5\",\"pages\":\"509-512\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12229\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12229\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12229","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Guest Editorial: Learning from limited annotations for computer vision tasks
The past decade has witnessed remarkable achievements in computer vision, owing to the fast development of deep learning. With the advancement of computing power and deep learning algorithms, we can process and apply millions or even hundreds of millions of large-scale data to train robust and advanced deep learning models. In spite of the impressive success, current deep learning methods tend to rely on massive annotated training data and lack the capability of learning from limited exemplars.
However, constructing a million-scale annotated dataset like ImageNet is time-consuming, labour-intensive and even infeasible in many applications. In certain fields, very limited annotated examples can be gathered due to various reasons such as privacy or ethical issues. Consequently, one of the pressing challenges in computer vision is to develop approaches that are capable of learning from limited annotated data. The purpose of this Special Issue is to collect high-quality articles on learning from limited annotations for computer vision tasks (e.g. image classification, object detection, semantic segmentation, instance segmentation and many others), publish new ideas, theories, solutions and insights on this topic and showcase their applications.
In this Special Issue we received 29 papers, all of which underwent peer review. Of the 29 originally submitted papers, 9 have been accepted.
The nine accepted papers can be clustered into two main categories: theoretical and applications. The papers that fall into the first category are by Liu et al., Li et al. and He et al. The second category of papers offers a direct solution to various computer vision tasks. These papers are by Ma et al., Wu et al., Rao et al., Sun et al., Hou et al. and Gong et al. A brief presentation of each of the papers in this Special Issue follows.
All of the papers selected for this Special Issue show that the field of learning from limited annotations for computer vision tasks is steadily moving forward. The possibility of a weakly supervised learning paradigm will remain a source of inspiration for new techniques in the years to come.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf