考虑电池退化的电动汽车电池交换站多目标优化运行策略

Astha Arora , Mohit Murarka , Dibakar Rakshit , Sukumar Mishra
{"title":"考虑电池退化的电动汽车电池交换站多目标优化运行策略","authors":"Astha Arora ,&nbsp;Mohit Murarka ,&nbsp;Dibakar Rakshit ,&nbsp;Sukumar Mishra","doi":"10.1016/j.cles.2022.100048","DOIUrl":null,"url":null,"abstract":"<div><p>The study aims to analyze a futuristic view of the automobile industry conducive to the much-needed penetration of Electric Vehicles (EVs) as per the current environmental and economic scenario. The study suggests the roll-out of EVs in tandem with the supporting Charging Infrastructure, which is a prerequisite for adopting the former. Although transport electrification is a much-accentuated and researched solution to the deteriorating environment and plummeting conventional resources, the design, production, manufacturing, use, degradation, and disposal of an exponential number of lithium-ion batteries for the same have environmental, economic, and social impacts. Thus, emphasis has been made on the sustainable use of charging infrastructure that curbs unnecessary and early battery aging from fast charging technology. Battery swap requests at a Battery Swapping Station (BSS) can be served via batteries from either available battery stock or by charging previously incoming discharged batteries. The study suggests an optimal strategy for the same via a mathematical model representing the operation cost of a BSS consisting of three components, namely, cost of battery utilization, damage cost associated with different charging methods, and dynamic electricity cost. The solution to the multiobjective optimization problem gave the optimum number of batteries that should be used from the battery stock and the charging decision for incoming discharged batteries, given the possible charging options and the constraints on demand satisfaction. Finally, the results from two different optimization tools, Solver in MS Excel and Lingo software, were compared.</p></div>","PeriodicalId":100252,"journal":{"name":"Cleaner Energy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multiobjective optimal operation strategy for electric vehicle battery swapping station considering battery degradation\",\"authors\":\"Astha Arora ,&nbsp;Mohit Murarka ,&nbsp;Dibakar Rakshit ,&nbsp;Sukumar Mishra\",\"doi\":\"10.1016/j.cles.2022.100048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The study aims to analyze a futuristic view of the automobile industry conducive to the much-needed penetration of Electric Vehicles (EVs) as per the current environmental and economic scenario. The study suggests the roll-out of EVs in tandem with the supporting Charging Infrastructure, which is a prerequisite for adopting the former. Although transport electrification is a much-accentuated and researched solution to the deteriorating environment and plummeting conventional resources, the design, production, manufacturing, use, degradation, and disposal of an exponential number of lithium-ion batteries for the same have environmental, economic, and social impacts. Thus, emphasis has been made on the sustainable use of charging infrastructure that curbs unnecessary and early battery aging from fast charging technology. Battery swap requests at a Battery Swapping Station (BSS) can be served via batteries from either available battery stock or by charging previously incoming discharged batteries. The study suggests an optimal strategy for the same via a mathematical model representing the operation cost of a BSS consisting of three components, namely, cost of battery utilization, damage cost associated with different charging methods, and dynamic electricity cost. The solution to the multiobjective optimization problem gave the optimum number of batteries that should be used from the battery stock and the charging decision for incoming discharged batteries, given the possible charging options and the constraints on demand satisfaction. Finally, the results from two different optimization tools, Solver in MS Excel and Lingo software, were compared.</p></div>\",\"PeriodicalId\":100252,\"journal\":{\"name\":\"Cleaner Energy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cleaner Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772783122000462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772783122000462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

该研究旨在根据当前的环境和经济情景,分析汽车行业的未来观点,以促进电动汽车急需的渗透。该研究建议,电动汽车的推出与配套的充电基础设施相结合,这是采用前者的先决条件。尽管交通电气化是应对日益恶化的环境和暴跌的传统资源的一个备受重视和研究的解决方案,但指数级锂离子电池的设计、生产、制造、使用、退化和处置也会对环境、经济和社会产生影响。因此,重点放在了充电基础设施的可持续使用上,以遏制快速充电技术带来的不必要的早期电池老化。电池交换站(BSS)的电池交换请求可以通过可用电池库存中的电池或通过对先前进入的已放电电池充电来提供服务。该研究通过表示BSS运行成本的数学模型提出了一种最佳策略,BSS由三个组成部分组成,即电池使用成本、与不同充电方法相关的损坏成本和动态电力成本。多目标优化问题的解决方案给出了电池库存中应使用的最佳电池数量,以及传入放电电池的充电决策,给出了可能的充电选项和需求满足的约束条件。最后,比较了MSExcel中的Solver和Lingo软件两种不同优化工具的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiobjective optimal operation strategy for electric vehicle battery swapping station considering battery degradation

The study aims to analyze a futuristic view of the automobile industry conducive to the much-needed penetration of Electric Vehicles (EVs) as per the current environmental and economic scenario. The study suggests the roll-out of EVs in tandem with the supporting Charging Infrastructure, which is a prerequisite for adopting the former. Although transport electrification is a much-accentuated and researched solution to the deteriorating environment and plummeting conventional resources, the design, production, manufacturing, use, degradation, and disposal of an exponential number of lithium-ion batteries for the same have environmental, economic, and social impacts. Thus, emphasis has been made on the sustainable use of charging infrastructure that curbs unnecessary and early battery aging from fast charging technology. Battery swap requests at a Battery Swapping Station (BSS) can be served via batteries from either available battery stock or by charging previously incoming discharged batteries. The study suggests an optimal strategy for the same via a mathematical model representing the operation cost of a BSS consisting of three components, namely, cost of battery utilization, damage cost associated with different charging methods, and dynamic electricity cost. The solution to the multiobjective optimization problem gave the optimum number of batteries that should be used from the battery stock and the charging decision for incoming discharged batteries, given the possible charging options and the constraints on demand satisfaction. Finally, the results from two different optimization tools, Solver in MS Excel and Lingo software, were compared.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
期刊最新文献
Simulation of a system to simultaneously recover CO2 and sweet carbon-neutral natural gas from wet natural gas: A delve into process inputs and units performances Optimizing a hybrid wind-solar-biomass system with battery and hydrogen storage using generic algorithm-particle swarm optimization for performance assessment Design and implementation of a control system for multifunctional applications of a Battery Energy Storage System (BESS) in a power system network Optimizing textile dyeing and finishing for improved energy efficiency and sustainability in fleece knitted fabrics Techno economic study of floating solar photovoltaic project in Indonesia using RETscreen
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1