Seyed-Sajad Ahmadpour , Nima Jafari Navimipour , Mohammad Mosleh , Ali Newaz Bahar , Senay Yalcin
{"title":"一种纳米级n位纹波进位加法器,使用优化的XOR门和量子点技术,减少了单元和功耗","authors":"Seyed-Sajad Ahmadpour , Nima Jafari Navimipour , Mohammad Mosleh , Ali Newaz Bahar , Senay Yalcin","doi":"10.1016/j.nancom.2023.100442","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>In the nano-scale era, quantum-dot cellular automata (QCA) technology has become an appealing substitute for transistor-based technologies. QCA will be the preferred technology for developing the next generation of digital systems. On the other hand, the full-adder and ripple </span>carry adder (RCA) are the crucial </span>building blocks<span> of complex circuits, the most used structures in digital operations systems, and a practical part of the most well-known complex circuits in QCA technology. In addition, this technology was used to design the full adder for several procedures, like multiplication, subtraction, and division. For this reason, the full adder is generally investigated as a central unit and </span></span>microprocessor<span> in developing QCA technology. Furthermore, most previous QCA-based adder structures have suffered from some drawbacks, such as a high number of cells, high energy consumption, the high number of gates, and the placement of inputs and outputs in a closed loop; hence, the implementation of an efficient adder with only one gate and a low number of cells, such as exclusive-OR (XOR) gate, can solve all previous problems. Therefore, in this paper, a significantly improved structure of 3-input XOR is suggested based on the promising QCA technology. In addition, a QCA clocking mechanism and explicit cell interaction form the foundation of the proposed QCA-based XOR gate configuration. This gate can be easily converted into an adder circuit while containing a small number of cells and being extremely compressed. The suggested QCA-based XOR design is focused on optimizing a single-bit adder using cellular interaction. The suggested single-bit adder contains 14 cells. Based on this adder, several different RCAs, such as 4, 8, 16, and 32-bit, are designed. The comparison of the proposed single-bit adder to the best coplanar and multi-layer ones shows a 51.72% and 36.36% reduction of cells, respectively. In addition, all suggested designs are verified through simulation using QCADesigner and QCAPro. Finally, many physical validations are provided to approve the functionality of the suggested XOR design.</span></p></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"36 ","pages":"Article 100442"},"PeriodicalIF":2.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A nano-scale n-bit ripple carry adder using an optimized XOR gate and quantum-dots technology with diminished cells and power dissipation\",\"authors\":\"Seyed-Sajad Ahmadpour , Nima Jafari Navimipour , Mohammad Mosleh , Ali Newaz Bahar , Senay Yalcin\",\"doi\":\"10.1016/j.nancom.2023.100442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>In the nano-scale era, quantum-dot cellular automata (QCA) technology has become an appealing substitute for transistor-based technologies. QCA will be the preferred technology for developing the next generation of digital systems. On the other hand, the full-adder and ripple </span>carry adder (RCA) are the crucial </span>building blocks<span> of complex circuits, the most used structures in digital operations systems, and a practical part of the most well-known complex circuits in QCA technology. In addition, this technology was used to design the full adder for several procedures, like multiplication, subtraction, and division. For this reason, the full adder is generally investigated as a central unit and </span></span>microprocessor<span> in developing QCA technology. Furthermore, most previous QCA-based adder structures have suffered from some drawbacks, such as a high number of cells, high energy consumption, the high number of gates, and the placement of inputs and outputs in a closed loop; hence, the implementation of an efficient adder with only one gate and a low number of cells, such as exclusive-OR (XOR) gate, can solve all previous problems. Therefore, in this paper, a significantly improved structure of 3-input XOR is suggested based on the promising QCA technology. In addition, a QCA clocking mechanism and explicit cell interaction form the foundation of the proposed QCA-based XOR gate configuration. This gate can be easily converted into an adder circuit while containing a small number of cells and being extremely compressed. The suggested QCA-based XOR design is focused on optimizing a single-bit adder using cellular interaction. The suggested single-bit adder contains 14 cells. Based on this adder, several different RCAs, such as 4, 8, 16, and 32-bit, are designed. The comparison of the proposed single-bit adder to the best coplanar and multi-layer ones shows a 51.72% and 36.36% reduction of cells, respectively. In addition, all suggested designs are verified through simulation using QCADesigner and QCAPro. Finally, many physical validations are provided to approve the functionality of the suggested XOR design.</span></p></div>\",\"PeriodicalId\":54336,\"journal\":{\"name\":\"Nano Communication Networks\",\"volume\":\"36 \",\"pages\":\"Article 100442\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Communication Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S187877892300008X\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Communication Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187877892300008X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A nano-scale n-bit ripple carry adder using an optimized XOR gate and quantum-dots technology with diminished cells and power dissipation
In the nano-scale era, quantum-dot cellular automata (QCA) technology has become an appealing substitute for transistor-based technologies. QCA will be the preferred technology for developing the next generation of digital systems. On the other hand, the full-adder and ripple carry adder (RCA) are the crucial building blocks of complex circuits, the most used structures in digital operations systems, and a practical part of the most well-known complex circuits in QCA technology. In addition, this technology was used to design the full adder for several procedures, like multiplication, subtraction, and division. For this reason, the full adder is generally investigated as a central unit and microprocessor in developing QCA technology. Furthermore, most previous QCA-based adder structures have suffered from some drawbacks, such as a high number of cells, high energy consumption, the high number of gates, and the placement of inputs and outputs in a closed loop; hence, the implementation of an efficient adder with only one gate and a low number of cells, such as exclusive-OR (XOR) gate, can solve all previous problems. Therefore, in this paper, a significantly improved structure of 3-input XOR is suggested based on the promising QCA technology. In addition, a QCA clocking mechanism and explicit cell interaction form the foundation of the proposed QCA-based XOR gate configuration. This gate can be easily converted into an adder circuit while containing a small number of cells and being extremely compressed. The suggested QCA-based XOR design is focused on optimizing a single-bit adder using cellular interaction. The suggested single-bit adder contains 14 cells. Based on this adder, several different RCAs, such as 4, 8, 16, and 32-bit, are designed. The comparison of the proposed single-bit adder to the best coplanar and multi-layer ones shows a 51.72% and 36.36% reduction of cells, respectively. In addition, all suggested designs are verified through simulation using QCADesigner and QCAPro. Finally, many physical validations are provided to approve the functionality of the suggested XOR design.
期刊介绍:
The Nano Communication Networks Journal is an international, archival and multi-disciplinary journal providing a publication vehicle for complete coverage of all topics of interest to those involved in all aspects of nanoscale communication and networking. Theoretical research contributions presenting new techniques, concepts or analyses; applied contributions reporting on experiences and experiments; and tutorial and survey manuscripts are published.
Nano Communication Networks is a part of the COMNET (Computer Networks) family of journals within Elsevier. The family of journals covers all aspects of networking except nanonetworking, which is the scope of this journal.