{"title":"基于分子印迹聚合物的双酚a传感器:在环境、食品和生物医学分析中的最新发展和应用","authors":"Eslam M. Hamed , Sam F.Y. Li","doi":"10.1016/j.teac.2022.e00167","DOIUrl":null,"url":null,"abstract":"<div><p><span>Bisphenol A (BPA) is a well-known endocrine-disrupting industrial compound that is found throughout many aspects of our daily life; from the water we drink and the food we eat to the babies’ bottles and children’s plastic toys. Chronic exposure to BPA may result in some severe medical issues which account for the great importance of its monitoring and removal from everyday products. The use of </span>molecularly imprinted polymers (MIPs) for that purpose has acquired a lot of traction in recent decades. MIPs are artificial antibodies with selective recognition cavities for specifically targeted substances. They are created using a variety of synthetic methods and employed in numerous types of sensors to be used in a wide range of applications. In this review, we focus on the different production methods of MIPs and the varied types of electrochemical and optical sensors that employed MIPs to detect and analyze BPA. Finally, the broad variety of applications of MIPs in environmental, foodstuff, and biological samples are thoroughly examined. Future expected trends and prospective developments are also assessed.</p></div>","PeriodicalId":56032,"journal":{"name":"Trends in Environmental Analytical Chemistry","volume":"35 ","pages":"Article e00167"},"PeriodicalIF":11.1000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Molecularly imprinted polymers-based sensors for bisphenol-A: Recent developments and applications in environmental, food and biomedical analysis\",\"authors\":\"Eslam M. Hamed , Sam F.Y. Li\",\"doi\":\"10.1016/j.teac.2022.e00167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Bisphenol A (BPA) is a well-known endocrine-disrupting industrial compound that is found throughout many aspects of our daily life; from the water we drink and the food we eat to the babies’ bottles and children’s plastic toys. Chronic exposure to BPA may result in some severe medical issues which account for the great importance of its monitoring and removal from everyday products. The use of </span>molecularly imprinted polymers (MIPs) for that purpose has acquired a lot of traction in recent decades. MIPs are artificial antibodies with selective recognition cavities for specifically targeted substances. They are created using a variety of synthetic methods and employed in numerous types of sensors to be used in a wide range of applications. In this review, we focus on the different production methods of MIPs and the varied types of electrochemical and optical sensors that employed MIPs to detect and analyze BPA. Finally, the broad variety of applications of MIPs in environmental, foodstuff, and biological samples are thoroughly examined. Future expected trends and prospective developments are also assessed.</p></div>\",\"PeriodicalId\":56032,\"journal\":{\"name\":\"Trends in Environmental Analytical Chemistry\",\"volume\":\"35 \",\"pages\":\"Article e00167\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Environmental Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214158822000149\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Environmental Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214158822000149","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Molecularly imprinted polymers-based sensors for bisphenol-A: Recent developments and applications in environmental, food and biomedical analysis
Bisphenol A (BPA) is a well-known endocrine-disrupting industrial compound that is found throughout many aspects of our daily life; from the water we drink and the food we eat to the babies’ bottles and children’s plastic toys. Chronic exposure to BPA may result in some severe medical issues which account for the great importance of its monitoring and removal from everyday products. The use of molecularly imprinted polymers (MIPs) for that purpose has acquired a lot of traction in recent decades. MIPs are artificial antibodies with selective recognition cavities for specifically targeted substances. They are created using a variety of synthetic methods and employed in numerous types of sensors to be used in a wide range of applications. In this review, we focus on the different production methods of MIPs and the varied types of electrochemical and optical sensors that employed MIPs to detect and analyze BPA. Finally, the broad variety of applications of MIPs in environmental, foodstuff, and biological samples are thoroughly examined. Future expected trends and prospective developments are also assessed.
期刊介绍:
Trends in Environmental Analytical Chemistry is an authoritative journal that focuses on the dynamic field of environmental analytical chemistry. It aims to deliver concise yet insightful overviews of the latest advancements in this field. By acquiring high-quality chemical data and effectively interpreting it, we can deepen our understanding of the environment. TrEAC is committed to keeping up with the fast-paced nature of environmental analytical chemistry by providing timely coverage of innovative analytical methods used in studying environmentally relevant substances and addressing related issues.