Li Sun, Ping Wang, Liuan Wang, Jun Sun, Takayuki Okatani
{"title":"零时间事件定位:无标签、无训练、无领域","authors":"Li Sun, Ping Wang, Liuan Wang, Jun Sun, Takayuki Okatani","doi":"10.1049/cvi2.12224","DOIUrl":null,"url":null,"abstract":"Temporal event localisation (TEL) has recently attracted increasing attention due to the rapid development of video platforms. Existing methods are based on either fully/weakly supervised or unsupervised learning, and thus they rely on expensive data annotation and time‐consuming training. Moreover, these models, which are trained on specific domain data, limit the model generalisation to data distribution shifts. To cope with these difficulties, the authors propose a zero‐shot TEL method that can operate without training data or annotations. Leveraging large‐scale vision and language pre‐trained models, for example, CLIP, we solve the two key problems: (1) how to find the relevant region where the event is likely to occur; (2) how to determine event duration after we find the relevant region. Query guided optimisation for local frame relevance relying on the query‐to‐frame relationship is proposed to find the most relevant frame region where the event is most likely to occur. Proposal generation method relying on the frame‐to‐frame relationship is proposed to determine the event duration. The authors also propose a greedy event sampling strategy to predict multiple durations with high reliability for the given event. The authors’ methodology is unique, offering a label‐free, training‐free, and domain‐free approach. It enables the application of TEL purely at the testing stage. The practical results show it achieves competitive performance on the standard Charades‐STA and ActivityCaptions datasets.","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"17 1","pages":"599-613"},"PeriodicalIF":1.5000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zero-shot temporal event localisation: Label-free, training-free, domain-free\",\"authors\":\"Li Sun, Ping Wang, Liuan Wang, Jun Sun, Takayuki Okatani\",\"doi\":\"10.1049/cvi2.12224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temporal event localisation (TEL) has recently attracted increasing attention due to the rapid development of video platforms. Existing methods are based on either fully/weakly supervised or unsupervised learning, and thus they rely on expensive data annotation and time‐consuming training. Moreover, these models, which are trained on specific domain data, limit the model generalisation to data distribution shifts. To cope with these difficulties, the authors propose a zero‐shot TEL method that can operate without training data or annotations. Leveraging large‐scale vision and language pre‐trained models, for example, CLIP, we solve the two key problems: (1) how to find the relevant region where the event is likely to occur; (2) how to determine event duration after we find the relevant region. Query guided optimisation for local frame relevance relying on the query‐to‐frame relationship is proposed to find the most relevant frame region where the event is most likely to occur. Proposal generation method relying on the frame‐to‐frame relationship is proposed to determine the event duration. The authors also propose a greedy event sampling strategy to predict multiple durations with high reliability for the given event. The authors’ methodology is unique, offering a label‐free, training‐free, and domain‐free approach. It enables the application of TEL purely at the testing stage. The practical results show it achieves competitive performance on the standard Charades‐STA and ActivityCaptions datasets.\",\"PeriodicalId\":56304,\"journal\":{\"name\":\"IET Computer Vision\",\"volume\":\"17 1\",\"pages\":\"599-613\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1049/cvi2.12224\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1049/cvi2.12224","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Temporal event localisation (TEL) has recently attracted increasing attention due to the rapid development of video platforms. Existing methods are based on either fully/weakly supervised or unsupervised learning, and thus they rely on expensive data annotation and time‐consuming training. Moreover, these models, which are trained on specific domain data, limit the model generalisation to data distribution shifts. To cope with these difficulties, the authors propose a zero‐shot TEL method that can operate without training data or annotations. Leveraging large‐scale vision and language pre‐trained models, for example, CLIP, we solve the two key problems: (1) how to find the relevant region where the event is likely to occur; (2) how to determine event duration after we find the relevant region. Query guided optimisation for local frame relevance relying on the query‐to‐frame relationship is proposed to find the most relevant frame region where the event is most likely to occur. Proposal generation method relying on the frame‐to‐frame relationship is proposed to determine the event duration. The authors also propose a greedy event sampling strategy to predict multiple durations with high reliability for the given event. The authors’ methodology is unique, offering a label‐free, training‐free, and domain‐free approach. It enables the application of TEL purely at the testing stage. The practical results show it achieves competitive performance on the standard Charades‐STA and ActivityCaptions datasets.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf