Shiwei Wang;Marco Ballini;Xiaolin Yang;Chutham Sawigun;Jan-Willem Weijers;Dwaipayan Biswas;Nick Van Helleputte;Carolina Mora Lopez
{"title":"一种具有输入阻抗提升的小型斩波稳定Δ-Δ∑神经读出IC","authors":"Shiwei Wang;Marco Ballini;Xiaolin Yang;Chutham Sawigun;Jan-Willem Weijers;Dwaipayan Biswas;Nick Van Helleputte;Carolina Mora Lopez","doi":"10.1109/OJSSCS.2021.3113887","DOIUrl":null,"url":null,"abstract":"This paper presents a scalable neural recording analog front-end architecture enabling simultaneous acquisition of action potentials, local field potentials, electrode DC offsets and stimulation artifacts without saturation. By combining a DC-coupled \n<inline-formula> <tex-math>$\\Delta $ </tex-math></inline-formula>\n-\n<inline-formula> <tex-math>$\\Delta \\Sigma $ </tex-math></inline-formula>\n architecture with new bootstrapping and chopping schemes, the proposed readout IC achieves an area of 0.0077 mm\n<sup>2</sup>\n per channel, an input-referred noise of 5.53 ± 0.36 \n<inline-formula> <tex-math>$\\mu \\text{V}_{\\mathrm{ rms}}$ </tex-math></inline-formula>\n in the action potential band and 2.88 ± 0.18 \n<inline-formula> <tex-math>$\\mu \\text{V}_{\\mathrm{ rms}}$ </tex-math></inline-formula>\n in the local field potential band, a dynamic range of 77 dB, an electrode-DC-offset tolerance of ±70 mV and an input impedance of 663 \n<inline-formula> <tex-math>$\\text{M}\\Omega $ </tex-math></inline-formula>\n. To validate this neural readout architecture, we fabricated a 16-channel proof of-concept IC and validated it in an \n<italic>in vitro</i>\n setting, demonstrating the capability to record extracellular signals even when using small, high-impedance electrodes. Because of the small area achieved, this architecture can be used to implement ultra-high-density neural probes for large-scale electrophysiology.","PeriodicalId":100633,"journal":{"name":"IEEE Open Journal of the Solid-State Circuits Society","volume":"1 ","pages":"67-78"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782712/8816720/09542934.pdf","citationCount":"9","resultStr":"{\"title\":\"A Compact Chopper Stabilized Δ-ΔΣ Neural Readout IC With Input Impedance Boosting\",\"authors\":\"Shiwei Wang;Marco Ballini;Xiaolin Yang;Chutham Sawigun;Jan-Willem Weijers;Dwaipayan Biswas;Nick Van Helleputte;Carolina Mora Lopez\",\"doi\":\"10.1109/OJSSCS.2021.3113887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a scalable neural recording analog front-end architecture enabling simultaneous acquisition of action potentials, local field potentials, electrode DC offsets and stimulation artifacts without saturation. By combining a DC-coupled \\n<inline-formula> <tex-math>$\\\\Delta $ </tex-math></inline-formula>\\n-\\n<inline-formula> <tex-math>$\\\\Delta \\\\Sigma $ </tex-math></inline-formula>\\n architecture with new bootstrapping and chopping schemes, the proposed readout IC achieves an area of 0.0077 mm\\n<sup>2</sup>\\n per channel, an input-referred noise of 5.53 ± 0.36 \\n<inline-formula> <tex-math>$\\\\mu \\\\text{V}_{\\\\mathrm{ rms}}$ </tex-math></inline-formula>\\n in the action potential band and 2.88 ± 0.18 \\n<inline-formula> <tex-math>$\\\\mu \\\\text{V}_{\\\\mathrm{ rms}}$ </tex-math></inline-formula>\\n in the local field potential band, a dynamic range of 77 dB, an electrode-DC-offset tolerance of ±70 mV and an input impedance of 663 \\n<inline-formula> <tex-math>$\\\\text{M}\\\\Omega $ </tex-math></inline-formula>\\n. To validate this neural readout architecture, we fabricated a 16-channel proof of-concept IC and validated it in an \\n<italic>in vitro</i>\\n setting, demonstrating the capability to record extracellular signals even when using small, high-impedance electrodes. Because of the small area achieved, this architecture can be used to implement ultra-high-density neural probes for large-scale electrophysiology.\",\"PeriodicalId\":100633,\"journal\":{\"name\":\"IEEE Open Journal of the Solid-State Circuits Society\",\"volume\":\"1 \",\"pages\":\"67-78\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8782712/8816720/09542934.pdf\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Solid-State Circuits Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9542934/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Solid-State Circuits Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/9542934/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Compact Chopper Stabilized Δ-ΔΣ Neural Readout IC With Input Impedance Boosting
This paper presents a scalable neural recording analog front-end architecture enabling simultaneous acquisition of action potentials, local field potentials, electrode DC offsets and stimulation artifacts without saturation. By combining a DC-coupled
$\Delta $
-
$\Delta \Sigma $
architecture with new bootstrapping and chopping schemes, the proposed readout IC achieves an area of 0.0077 mm
2
per channel, an input-referred noise of 5.53 ± 0.36
$\mu \text{V}_{\mathrm{ rms}}$
in the action potential band and 2.88 ± 0.18
$\mu \text{V}_{\mathrm{ rms}}$
in the local field potential band, a dynamic range of 77 dB, an electrode-DC-offset tolerance of ±70 mV and an input impedance of 663
$\text{M}\Omega $
. To validate this neural readout architecture, we fabricated a 16-channel proof of-concept IC and validated it in an
in vitro
setting, demonstrating the capability to record extracellular signals even when using small, high-impedance electrodes. Because of the small area achieved, this architecture can be used to implement ultra-high-density neural probes for large-scale electrophysiology.